login
A225056
Smallest k such that q=2*k*prime(n)^4+b , r=2*k*q^4+c , s=2*k*r^4+d and q, r and s are all prime numbers with b, c and d = -1 or 1.
1
3199, 339, 1267, 258, 696, 209, 5514, 4043, 1773, 390, 4188, 21735, 4449, 426, 19410, 14681, 159, 23475, 1074, 36876, 1449, 349, 6525, 4725, 3141, 354, 2799, 16164, 369, 8751, 2385, 9534, 7973, 6045, 1644, 17377, 10574, 21060, 465, 7734, 24264, 9630, 43005
OFFSET
1,1
LINKS
Pierre CAMI, Program
EXAMPLE
q=2*339*3^4-1=54917 prime, 3=prime(2),
r=2*339*54917^4-1=6166758091711727821637 prime,
s=2*339*6166758091711727821637^4-1 = 980522001959784653177131336948216283558445362942309523305624291540914216062705919811218757 prime,
so a(2)=339 with b=-1 c=-1 d=-1.
PROG
See link.
CROSSREFS
Sequence in context: A345847 A250386 A069401 * A306197 A211840 A235786
KEYWORD
nonn,less
AUTHOR
Pierre CAMI, Apr 26 2013
STATUS
approved