login
A224611
Smallest j such that j*2*p(n)^3-1=q is prime, j*2*p(n)*q^2-1=r, j*2*p(n)*r^2-1=s, where r and s are also prime.
4
902, 145, 771, 1060, 3569, 520, 938, 294, 2457, 3911, 1650, 483, 8604, 3450, 2345, 548, 25004, 1635, 5767, 14519, 2518, 6394, 198, 7961, 4272, 8370, 4146, 654, 4489, 6987, 222, 5426, 5250, 17670, 7691, 360, 3994, 20821, 9008, 6525, 9204, 1464, 6111, 6625, 11229, 3315, 62340, 735, 6962, 5236
OFFSET
1,1
MATHEMATICA
a[n_] := For[j = 1, j < 10^7, j++, p = Prime[n]; If[PrimeQ[q = j*2*p^3 - 1] && PrimeQ[r = j*2*p*q^2 - 1] && PrimeQ[j*2*p*r^2 - 1], Return[j]]]; Table[ Print[an = a[n]]; an, {n, 1, 50}] (* Jean-François Alcover, Apr 12 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Pierre CAMI, Apr 12 2013
STATUS
approved