login
A223987
T(n,k)=Number of nXk 0..3 arrays with rows unimodal and columns nondecreasing
12
4, 16, 10, 50, 100, 20, 130, 684, 400, 35, 296, 3526, 5029, 1225, 56, 610, 14751, 44803, 25410, 3136, 84, 1163, 52591, 308470, 358118, 99634, 7056, 120, 2083, 165212, 1738756, 3770722, 2086196, 325120, 14400, 165, 3544, 468292, 8350154, 31585056
OFFSET
1,1
COMMENTS
Table starts
...4....16.......50........130.........296...........610...........1163
..10...100......684.......3526.......14751.........52591.........165212
..20...400.....5029......44803......308470.......1738756........8350154
..35..1225....25410.....358118.....3770722......31585056......219861244
..56..3136....99634....2086196....31831914.....378122264.....3661410444
..84..7056...325120....9647292...204647416....3322756326....43307637038
.120.14400...922768...37395816..1067023886...22985966340...392525216516
.165.27225..2346883..126087157..4710529013..131366850521..2873859236297
.220.48400..5462600..379654704.18159308422..642224541548.17659521902693
.286.81796.11818092.1040942916.62548820489.2756467192963.93729371629362
LINKS
FORMULA
Empirical: columns k=1..7 are polynomials of degree 3*k
Empirical: rows n=1..7 are polynomials of degree 6*n
EXAMPLE
Some solutions for n=3 k=4
..0..2..1..1....0..0..2..0....0..1..1..0....1..2..0..0....2..2..2..0
..0..2..2..1....1..1..2..0....0..3..2..1....1..2..2..0....3..2..2..1
..1..3..3..3....2..3..2..1....3..3..2..1....2..3..3..2....3..2..2..1
CROSSREFS
Column 1 is A000292(n+1)
Column 2 is A001249
Row 1 is A223659
Row 2 is A223865
Sequence in context: A181717 A224173 A223864 * A224123 A273579 A147560
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Mar 30 2013
STATUS
approved