login
A221024
T(n,k)=Equals one maps: number of nXk binary arrays indicating the locations of corresponding elements equal to exactly one of their horizontal, vertical and antidiagonal neighbors in a random 0..3 nXk array
4
1, 2, 2, 4, 8, 4, 8, 38, 38, 8, 16, 168, 371, 168, 16, 32, 726, 3474, 3474, 726, 32, 64, 3088, 30167, 62944, 30167, 3088, 64, 128, 12974, 251674, 1038208, 1038208, 251674, 12974, 128, 256, 54000, 2055232, 16735744, 33512960, 16735744, 2055232, 54000, 256, 512
OFFSET
1,2
COMMENTS
Table starts
...1......2........4.........8.........16.........32..........64........128
...2......8.......38.......168........726.......3088.......12974......54000
...4.....38......371......3474......30167.....251674.....2055232...16609480
...8....168.....3474.....62944....1038208...16735744...268269568.4294303744
..16....726....30167...1038208...33512960.1073575936.34359074816
..32...3088...251674..16735744.1073575936
..64..12974..2055232.268269568
.128..54000.16609480
.256.223118
.512
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 7*a(n-1) -11*a(n-2) -3*a(n-3) -4*a(n-4)
k=3: a(n) = 12*a(n-1) -30*a(n-2) -24*a(n-3) +63*a(n-4) +12*a(n-5) -32*a(n-6) for n>11
k=4: a(n) = 20*a(n-1) -64*a(n-2) for n>5
k=5: a(n) = 36*a(n-1) -128*a(n-2) for n>5
EXAMPLE
Some solutions for n=3 k=4
..1..0..0..0....0..0..0..1....0..0..1..1....0..0..0..1....1..0..0..0
..0..1..0..0....0..0..1..0....0..0..0..0....0..1..0..0....0..1..1..0
..1..1..1..1....0..1..0..0....0..0..1..0....0..0..1..1....0..0..0..0
CROSSREFS
Column 1 is A000079(n-1)
Column 2 is A220806
Sequence in context: A222659 A116694 A220810 * A220545 A220751 A220967
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Dec 28 2012
STATUS
approved