%I #5 Dec 25 2012 06:33:27
%S 4,44,324,2456,18606,141464,1073265,8150889,61863941,469706074,
%T 3565661822,27070430317,205508452073,1560178900248,11844428071293,
%U 89919992489163,682648660439116,5182493876535532,39344142007624031
%N Majority value maps: number of nX3 binary arrays indicating the locations of corresponding elements equal to at least half of their horizontal, diagonal and antidiagonal neighbors in a random 0..2 nX3 array
%C Column 3 of A220922
%H R. H. Hardin, <a href="/A220920/b220920.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 8*a(n-1) +14*a(n-2) -145*a(n-3) +48*a(n-4) +580*a(n-5) -267*a(n-6) -2093*a(n-7) -2375*a(n-8) +30972*a(n-9) -40352*a(n-10) +17794*a(n-11) -141683*a(n-12) +166879*a(n-13) +98030*a(n-14) +26735*a(n-15) +351625*a(n-16) -438167*a(n-17) +195640*a(n-18) -492669*a(n-19) +1885780*a(n-20) -600628*a(n-21) +421889*a(n-22) -4956450*a(n-23) -927523*a(n-24) -1385571*a(n-25) +5331813*a(n-26) +21644183*a(n-27) -4396766*a(n-28) +9144012*a(n-29) -43483240*a(n-30) -729132*a(n-31) -10928792*a(n-32) +25775668*a(n-33) +27487564*a(n-34) -12117948*a(n-35) +28466280*a(n-36) -44360880*a(n-37) +52937600*a(n-38) -51521136*a(n-39) +67747840*a(n-40) -50661984*a(n-41) +25715072*a(n-42) -69526208*a(n-43) +8598016*a(n-44) -8316800*a(n-45) +24131328*a(n-46) -7541504*a(n-47) -11153408*a(n-48) -11290624*a(n-49) -264192*a(n-50) +1933312*a(n-51) +1409024*a(n-52) +753664*a(n-53) +458752*a(n-54) +327680*a(n-55) -131072*a(n-56) -262144*a(n-57) for n>59
%e Some solutions for n=3
%e ..1..1..0....1..0..1....1..1..1....1..0..1....0..1..1....1..1..1....0..1..0
%e ..1..0..1....1..0..0....0..0..0....1..1..1....0..1..1....1..0..1....1..0..1
%e ..0..1..0....0..0..0....1..1..1....1..1..0....0..1..1....0..1..1....1..1..0
%K nonn
%O 1,1
%A _R. H. Hardin_ Dec 25 2012