%I #10 Dec 19 2012 12:06:59
%S 0,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,6,7,7,7,7,8,8,8,8,9,9,9,9,10,10,
%T 10,10,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,15,15,15,15,16,
%U 16,16,16,17,17,17,17,18,18,18,18,19,19,19,19,20,20
%N Irregular table, where the n-th row consists of A084558(n)+1 copies of n.
%C Equally, for n>=1, each i in range [n!,(n+1)!-1] occurs n+1 times.
%C Used for computing A220659, A055089 and A060118: The n-th term a(n) tells which permutation (counted from the start, zero-based) of A055089 or A060117/A060118 the n-th term in those sequence belongs to.
%H A. Karttunen, <a href="/A220658/b220658.txt">Rows 0..720 of the irregular table, flattened.</a>
%e Rows of this irregular table begin as:
%e 0;
%e 1, 1;
%e 2, 2, 2;
%e 3, 3, 3;
%e 4, 4, 4;
%e 5, 5, 5;
%e 6, 6, 6, 6;
%e The terms A055089(3), A055089(4) and A055089(5) are 1,3,2. As a(3), a(4) and a(5) are all 2, we see that "132" is the second permutation in A055089-list, after the identity permutation "1", which has the index zero.
%o (Scheme with _Antti Karttunen_'s intseq-library): (define A220658 (COMPOSE (LEAST-GTE-I 1 0 (COMPOSE A220657 1+)) 1+))
%Y Cf. A220657, A220659.
%K nonn,tabf
%O 0,4
%A _Antti Karttunen_, Dec 18 2012