login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A220072 Least prime p such that sum_{k=0}^n A005117(k+1)*x^{n-k} is irreducible modulo p. 11
2, 5, 2, 7, 11, 31, 13, 19, 89, 17, 37, 37, 43, 19, 137, 29, 3, 7, 2, 19, 13, 59, 139, 37, 2, 239, 31, 337, 487, 97, 337, 97, 307, 181, 223, 19, 79, 401, 2, 491, 269, 211, 97, 193, 719, 149, 97, 191, 83, 613 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Conjecture: For any n>0, we have a(n) <= n*(n+1), and the Galois group of SF_n(x) = sum_{k=0}^n A005117(k+1)*x^{n-k} over the rationals is isomorphic to the symmetric group S_n.

For another related conjecture, see the author's comment on A005117.

LINKS

Zhi-Wei Sun, Table of n, a(n) for n = 1..350

EXAMPLE

a(4)=7 since SF_4(x)=x^4+2x^3+3x^2+5x+6 is irreducible modulo 7 but reducible modulo any of 2, 3, 5. It is easy to check that SF_4(x)==(x-2)*(x^3-x^2+x+2) (mod 5).

CROSSREFS

Cf. A005117, A217785, A217788, A218465.

Sequence in context: A246355 A016580 A309324 * A065223 A248154 A274415

Adjacent sequences:  A220069 A220070 A220071 * A220073 A220074 A220075

KEYWORD

nonn

AUTHOR

Zhi-Wei Sun, Mar 28 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 14 05:36 EST 2019. Contains 329978 sequences. (Running on oeis4.)