login
A219688
Number of 4Xn arrays of the minimum value of corresponding elements and their horizontal, vertical or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 4Xn array
1
10, 19, 99, 427, 1531, 5031, 15763, 47784, 140586, 401745, 1116450, 3022129, 7979699, 20573716, 51835099, 127704345, 307858090, 726741861, 1681297548, 3815152314, 8498764539, 18601381870, 40034714647, 84794977698, 176874740063
OFFSET
1,1
COMMENTS
Row 4 of A219686
LINKS
FORMULA
Empirical: a(n) = (1/71811157608013824000000)*n^25 - (101/17234677825923317760000)*n^24 + (5449/4308669456480829440000)*n^23 - (68021/374666909259202560000)*n^22 + (9824237/510909421717094400000)*n^21 - (21583/13610640605184000)*n^20 + (5371647499/51090942171709440000)*n^19 - (394323599/68948639907840000)*n^18 + (45438295453/175751435059200000)*n^17 - (16515462281/1687213776568320)*n^16 + (542084002355513/1739939207086080000)*n^15 - (28192245777209/3381806039040000)*n^14 + (3250324207416831463/17399392070860800000)*n^13 - (1612171294329183241/463983788556288000)*n^12 + (2781152508058068181/52725430517760000)*n^11 - (757894220102779469/1198305239040000)*n^10 + (37334585059613913334793/6722492391014400000)*n^9 - (107120698751683891/3939922280448)*n^8 - (79214526965365782185939/798295971432960000)*n^7 + (49706772664271871813409/13646084981760000)*n^6 - (2005940155459581015843920483/48784753809792000000)*n^5 + (15777623834516738464154783/54205282010880000)*n^4 - (17331604984082844755616061/12467214862502400)*n^3 + (215362834119633956818141/49473074851200)*n^2 - (4207251609878775049/524924400)*n + 6438609162 for n>14
EXAMPLE
Some solutions for n=3
..1..1..0....2..0..0....0..0..0....1..1..0....2..1..1....1..0..0....1..0..0
..1..0..0....2..0..0....0..0..0....1..0..0....2..1..1....1..0..0....1..0..0
..2..0..0....2..1..1....1..0..0....1..0..0....2..2..2....1..0..0....1..1..1
..2..1..1....2..1..1....1..2..2....2..2..2....2..2..2....2..1..1....1..1..1
CROSSREFS
Sequence in context: A255764 A181957 A181898 * A166706 A131495 A060630
KEYWORD
nonn
AUTHOR
R. H. Hardin Nov 25 2012
STATUS
approved