This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A218694 Carlitz compositions of n into odd parts. 1
 1, 1, 0, 1, 2, 2, 2, 3, 6, 9, 10, 13, 22, 32, 40, 56, 86, 122, 164, 229, 332, 474, 656, 914, 1310, 1867, 2604, 3648, 5184, 7346, 10318, 14506, 20516, 29022, 40880, 57548, 81260, 114810, 161864, 228092, 321892, 454444, 640954, 903715, 1274998, 1799320, 2538218, 3579714, 5049954, 7125359, 10051844 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Carlitz compositions are compositions where adjacent parts are distinct (see A003242). LINKS Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 0..1000 (terms 0..262 from Joerg Arndt) FORMULA G.f.: 1/( 1 - Sum_{j>=0} x^(2j+1)/(1 + x^(2j+1)) ). - Geoffrey Critzer, Nov 21 2013 a(n) ~ c / r^n, where r = 0.708865489663179258570259601255070249415... is the root of the equation sum_{j>=0} x^(2j+1)/(1 + x^(2j+1)) = 1, c = 0.3391570949344217123793275284038135702369824934927187... . - Vaclav Kotesovec, Aug 22 2014 EXAMPLE There are a(12) = 22 such compositions of 12: [ 1]  1 3 1 3 1 3 [ 2]  1 3 1 7 [ 3]  1 3 5 3 [ 4]  1 3 7 1 [ 5]  1 5 1 5 [ 6]  1 7 1 3 [ 7]  1 7 3 1 [ 8]  1 11 [ 9]  3 1 3 1 3 1 [10]  3 1 3 5 [11]  3 1 5 3 [12]  3 1 7 1 [13]  3 5 1 3 [14]  3 5 3 1 [15]  3 9 [16]  5 1 5 1 [17]  5 3 1 3 [18]  5 7 [19]  7 1 3 1 [20]  7 5 [21]  9 3 [22]  11 1 MAPLE b:= proc(n, t) option remember; `if`(n=0, 1,        add(`if`(j=t or irem(j, 2)=0, 0, b(n-j, j)), j=1..n))     end: a:= n-> b(n, 0): seq(a(n), n=0..70);  # Alois P. Heinz, Nov 08 2012 MATHEMATICA nn=20; CoefficientList[Series[1/(1-Sum[z^(2j+1)/(1+z^(2j+1)), {j, 0, nn}]), {z, 0, nn}], z] (* Geoffrey Critzer, Nov 21 2013 *) CROSSREFS Cf. A003242 (Carlitz compositions), A032021 (compositions into distinct odd parts), A032020 (compositions into distinct parts). Sequence in context: A057040 A096235 A147851 * A143596 A091712 A125721 Adjacent sequences:  A218691 A218692 A218693 * A218695 A218696 A218697 KEYWORD nonn AUTHOR Joerg Arndt, Nov 04 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.