login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Recurring digital invariants of order 6.
2

%I #5 Oct 29 2012 13:51:08

%S 17148,63804,93531,239459,282595

%N Recurring digital invariants of order 6.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RecurringDigitalInvariant.html">Recurring Digital Invariant</a>

%e 63804: 6^6 + 3^6 + 8^6 + 0^6 + 4^6 = 313625

%e 313625: 3^6 + 1^6 + 3^6 + 6^6 + 2^6 + 5^6 = 63804,

%e so 63804 is an order 6 recurring digital invariant.

%t lst = {}; f[n_] := Total[IntegerDigits[n]^6]; Do[a = n; Do[a = f[a]; If[a < n, Break[]]; If[a == n && ! n == f[n], AppendTo[lst, n]; Break[]], {30}], {n, 10^6}]; lst

%Y Cf. A218161, A218246, A218248.

%K base,fini,full,nonn

%O 1,1

%A _Arkadiusz Wesolowski_, Oct 24 2012