login
A218183
Number of true entries in truth tables of bracketed formulas connected by modified implication (case 3).
1
0, 0, 1, 4, 19, 108, 646, 4056, 26355, 175628, 1193906, 8246856, 57716798, 408391736, 2916689516, 20997741104, 152218453443, 1110202813836, 8140864778810, 59981252880360, 443834410644618, 3296876425605992, 24575508928455572, 183773880824034512
OFFSET
0,4
FORMULA
Yildiz gives a g.f. (see Proposition 6.4).
G.f.: (-5 + 3*sqrt(1-8*x) + 3*sqrt(3-4*x-2*sqrt(1-8*x)) + 4*x - sqrt(1-8*x)*sqrt(3-4*x-2*sqrt(1-8*x)))/4. - Michel Marcus, Jun 10 2021
PROG
(PARI) all_a(m) = {x= y+O(y^(m+1)); P = (-5 + 3*sqrt(1-8*x)+3*sqrt(3-4*x-2*sqrt(1-8*x)) + 4*x - sqrt(1-8*x)*sqrt(3-4*x-2*sqrt(1-8*x)))/4; for (n=0, m, print1(polcoeff(P, n, y), ", ")); } \\ Michel Marcus, Feb 17 2013
(PARI) concat(vector(2), Vec((-5 + 3*sqrt(1-8*x) + 3*sqrt(3-4*x-2*sqrt(1-8*x)) + 4*x - sqrt(1-8*x)*sqrt(3-4*x-2*sqrt(1-8*x)))/4 + O(x^20))) \\ Felix Fröhlich, Jun 10 2021
CROSSREFS
Cf. A218184.
Sequence in context: A174992 A182541 A241839 * A206227 A091643 A323620
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 23 2012
EXTENSIONS
More terms from Michel Marcus, Feb 17 2013
STATUS
approved