login
A217120
Lucas pseudoprimes.
6
323, 377, 1159, 1829, 3827, 5459, 5777, 9071, 9179, 10877, 11419, 11663, 13919, 14839, 16109, 16211, 18407, 18971, 19043, 22499, 23407, 24569, 25199, 25877, 26069, 27323, 32759, 34943, 35207, 39059, 39203, 39689, 40309, 44099, 46979, 47879
OFFSET
1,1
COMMENTS
Lucas pseudoprimes with parameters (P, Q) defined by Selfridge's Method A.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (from Dana Jacobsen's site, terms 1..2998 from R. J. Mathar)
Martin R. Albrecht, Jake Massimo, Kenneth G. Paterson, Juraj Somorovsky, Prime and Prejudice: Primality Testing Under Adversarial Conditions, Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, 281-298.
Robert Baillie and Samuel S. Wagstaff, Jr., Lucas Pseudoprimes, Mathematics of Computation, 35 (1980), 1391-1417.
Dana Jacobsen, Pseudoprime Statistics, Tables, and Data (includes terms through 10^14)
MATHEMATICA
(* see link *)
CROSSREFS
Cf. A005845 (Lucas pseudoprimes as defined by Bruckman).
Cf. A217255 (strong Lucas pseudoprimes as defined by Baillie and Wagstaff).
Cf. A217719 (extra strong Lucas pseudoprimes as defined by Baillie).
Sequence in context: A182554 A340118 A339517 * A081264 A069107 A094412
KEYWORD
nonn
AUTHOR
Robert Baillie, Mar 16 2013
STATUS
approved