%I #16 Sep 25 2018 08:00:13
%S 1,2,5,1,15,9,52,63,5,203,416,101,877,2741,1361,61,4140,18425,15602,
%T 2153,21147,127603,165786,46959,1385,115975,914508,1700220,823256,
%U 74841,678570,6794508,17200589,12802659,2389953,50521,4213597,52354116,173871641,185499899,59207070,3855277
%N Triangle read by rows, arising in enumeration of permutations by cyclic peaks.
%C See Ma and Chow (2012) for precise definition (see corollary 2).
%H Shi-Mei Ma and Chak-On Chow, <a href="http://arxiv.org/abs/1203.6264">Enumeration of permutations by number of cyclic peaks and cyclic valleys</a>, arXiv preprint arXiv:1203.6264, 2012
%e Triangle begins:
%e 1
%e 2
%e 5,1
%e 15,9
%e 52,63,5
%e 203,416,101
%e 877,2741,1361,61
%e ...
%t P[1] := x y; P[n_] := P[n] = ((n-1)q + x y) P[n-1] + 2q(1-q) D[P[n-1], q] + x(1-q) D[P[n-1], x] + (1-y) D[P[n-1], y] // Simplify;
%t row[n_] := CoefficientList[P[n] /. {x -> 1, y -> 1}, q];
%t Array[row, 12] // Flatten (* _Jean-François Alcover_, Sep 25 2018 *)
%o (PARI) tabf(m) = {P = x; for (n=1, m, M = subst(P, x, 1); for (d=0, poldegree(M, q), print1(polcoeff(M, d, q), ", "); ); print(""); P = (n*q+x)*P + 2*q*(1-q)*deriv(P, q)+ x*(1-q)*deriv(P,x););} \\ _Michel Marcus_, Feb 08 2013
%Y First column is A000110.
%K nonn,tabf
%O 1,2
%A _N. J. A. Sloane_, Sep 27 2012
%E More terms from _Michel Marcus_, Feb 08 2013