OFFSET
0,4
COMMENTS
Chao et al. (2012) proved: lim_{n --> infinity} a(n) / (3 (n choose 3)) = 2 (sqrt(3) - 1)/3 = 0.488033... and: a(n) / (3 (n choose 3)) > 2 (sqrt(3) - 1)/3 = 0.488033... for all n > 2.
a(n) = A061061(n) + (n choose 3).
REFERENCES
J. Byrka, P. Gawrychowski, K. T. Huber and S. Kelk. Worst-case optimal approximation algorithms for maximizing triple consistency within phylogenetic networks. Journal of Discrete Algorithms, Vol. 8, Number 1, pp. 65-75, 2010.
K.-M. Chao, A.-C. Chu, J. Jansson, R. S. Lemence and A. Mancheron. Asymptotic Limits of a New Type of Maximization Recurrence with an Application to Bioinformatics. Proceedings of the Ninth Annual Conference on Theory and Applications of Models of Computation (TAMC 2012), Lecture Notes in Computer Science, Vol. 7287, pp. 177-188, Springer-Verlag Berlin Heidelberg, 2012.
J. Jansson, N. B. Nguyen and W.-K. Sung. Algorithms for Combining Rooted Triplets into a Galled Phylogenetic Network. SIAM Journal on Computing, Vol. 35, Number 5, pp. 1098-1121, Society for Industrial and Applied Mathematics (SIAM), 2006.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
FORMULA
a(0) = 0,
a(n) = max_{1<=i<=n} [C(i,3) +2*C(i,2)*(n-i) +i*C(n-i,2) +a(n-i)] for n>0.
MAPLE
a:= proc(n) option remember; `if`(n=0, 0, max(seq(
binomial(i, 3) +2*binomial(i, 2)*(n-i)+
i*binomial(n-i, 2) + a(n-i), i=1..n)))
end:
seq(a(n), n=0..70); # Alois P. Heinz, Jan 28 2016
MATHEMATICA
a[0] = 0; a[n_] := a[n] = Max[Table[Binomial[i, 3] + 2*Binomial[i, 2]*(n-i) + i*Binomial[n-i, 2] + a[n-i], {i, 1, n}]]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Oct 24 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Jesper Jansson, Sep 08 2012
STATUS
approved