login
Fifth derivative of f_n at x=1, where f_n is the n-th of all functions that are representable as x^x^...^x with m>=1 x's and parentheses inserted in all possible ways.
3

%I #9 Mar 06 2019 21:04:01

%S 0,10,240,180,1110,650,590,360,3160,1880,1180,1420,950,1360,890,660,

%T 480,7050,4410,2770,3130,2300,2070,1480,2670,1840,1370,1070,2610,1780,

%U 1190,1310,1010,1080,780,600,480,13560,8900,5780,3780,6260,4950,4140,3190,3080

%N Fifth derivative of f_n at x=1, where f_n is the n-th of all functions that are representable as x^x^...^x with m>=1 x's and parentheses inserted in all possible ways.

%C For the ordering of functions f_n see A215703.

%H Alois P. Heinz, <a href="/A215835/b215835.txt">Table of n, a(n) for n = 1..7813</a>

%p T:= proc(n) T(n):=`if`(n=1, [x], map(h-> x^h, g(n-1$2))) end:

%p g:= proc(n, i) option remember; `if`(i=1, [x^n], [seq(seq(

%p seq(mul(T(i)[w[t]-t+1], t=1..j)*v, v=g(n-i*j, i-1)), w=

%p combinat[choose]([$1..nops(T(i))+j-1], j)), j=0..n/i)])

%p end:

%p f:= proc() local i, l; i, l:= 0, []; proc(n) while n>

%p nops(l) do i:= i+1; l:= [l[], T(i)[]] od; l[n] end

%p end():

%p a:= n-> 5!*coeff(series(subs(x=x+1, f(n)), x, 6), x, 5):

%p seq(a(n), n=1..100);

%Y Row n=5 of A215703.

%Y Number of distinct values of a(n) taken for functions with m x's: A199296.

%Y Cf. A000081, A087803.

%K nonn

%O 1,2

%A _Alois P. Heinz_, Aug 24 2012