login
Number T(n,k) of solid standard Young tableaux of shape [[n,k],[n-k]]; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
8

%I #40 Mar 30 2023 11:03:08

%S 1,1,1,2,6,2,5,25,25,5,14,98,174,98,14,42,378,962,962,378,42,132,1452,

%T 4804,7020,4804,1452,132,429,5577,22689,43573,43573,22689,5577,429,

%U 1430,21450,103510,245962,325590,245962,103510,21450,1430

%N Number T(n,k) of solid standard Young tableaux of shape [[n,k],[n-k]]; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

%C T(n,k) is odd if and only if n = 2^i-1 for i in {0, 1, 2, ... } = A001477.

%H Alois P. Heinz, <a href="/A214775/b214775.txt">Rows n = 0..140, flattened</a>

%H S. B. Ekhad, D. Zeilberger, <a href="https://arxiv.org/abs/1202.6229">Computational and Theoretical Challenges on Counting Solid Standard Young Tableaux</a>, arXiv:1202.6229v1 [math.CO], 2012

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Young_tableau">Young tableau</a>

%e Triangle T(n,k) begins:

%e 1;

%e 1, 1;

%e 2, 6, 2;

%e 5, 25, 25, 5;

%e 14, 98, 174, 98, 14;

%e 42, 378, 962, 962, 378, 42;

%e 132, 1452, 4804, 7020, 4804, 1452, 132;

%e ...

%p b:= proc(x, y, z) option remember; `if`(z>y, b(x, z, y),

%p `if`({x, y, z}={0}, 1, `if`(x>y and x>z, b(x-1, y, z), 0)+

%p `if`(y>0, b(x, y-1, z), 0)+ `if`(z>0, b(x, y, z-1), 0)))

%p end:

%p T:= (n, k)-> b(n, k, n-k):

%p seq(seq(T(n, k), k=0..n), n=0..10);

%t b[x_, y_, z_] := b[x, y, z] = If[z>y, b[x, z, y], If[Union[{x, y, z}] == {0}, 1, If[x>y && x>z, b[x-1, y, z], 0] + If[y>0, b[x, y-1, z], 0] + If[z>0, b[x, y, z-1], 0]]]; T[n_, k_] := b[n, k, n-k]; Table[T[n, k] , {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jan 15 2014, translated from Maple *)

%o (Sage)

%o @CachedFunction

%o def B(x, y, z) :

%o if z > y : return B(x, z, y)

%o if x==y and y==z and z==0 : return 1

%o a = B(x-1, y, z) if x>y and x>z else 0

%o b = B(x, y-1, z) if y>0 else 0

%o c = B(x, y, z-1) if z>0 else 0

%o return a + b + c

%o T = lambda n, k: B(n, k, n-k)

%o [[T(n, k) for k in (0..n)] for n in (0..10)]

%o # After Maple code of Alois P. Heinz. _Peter Luschny_, Jul 30 2012

%Y Columns 0-5 give: A000108, A214955, A215298, A215299, A215300, A215301.

%Y Row sums give: A215002.

%Y Central row elements give: A214801.

%K nonn,tabl

%O 0,4

%A _Alois P. Heinz_, Jul 28 2012