login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214725
Smallest number expressible as a sum of 9 cubes (including 0) in n ways.
1
0, 8, 35, 72, 133, 189, 216, 224, 280, 376, 411, 496, 533, 472, 568, 624, 712, 720, 784, 783, 908, 946, 992, 945, 1062, 1072, 1081, 1107, 1153, 1161, 1224, 1288, 1376, 1377, 1449, 1459, 1547, 1496, 1504, 1593, 1592, 1712, 1719, 1648, 1783, 1800, 1837, 1864
OFFSET
1,2
EXAMPLE
a(1) = 0: [0,0,0,0,0,0,0,0,0].
a(2) = 8: [0,0,0,0,0,0,0,0,2], [0,1,1,1,1,1,1,1,1].
a(3) = 35: [0,0,0,0,0,0,0,2,3], [0,0,1,1,1,2,2,2,2], [1,1,1,1,1,1,1,1,3].
a(7) = 216: [0,0,0,0,0,0,0,0,6], [0,1,1,1,2,2,2,4,5], [0,0,1,1,2,3,3,3,5], [1,2,2,3,3,3,3,3,4], [0,0,0,2,2,2,4,4,4], [0,3,3,3,3,3,3,3,3], [0,0,0,0,0,0,3,4,5].
MAPLE
b:= proc(n, i, t) option remember;
`if`(n=0, 1, `if`(i<1 or t<1, 0, b(n, i-1, t)+
`if`(i^3>n, 0, b(n-i^3, i, t-1))))
end:
a:= proc(n) local k;
for k from 0 while b(k, isqrt(k), 9)<>n do od; k
end:
seq(a(n), n=1..20); # Alois P. Heinz, Jul 26 2012
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[i < 1 || t < 1, 0, b[n, i - 1, t] + If[i^3 > n, 0, b[n - i^3, i, t - 1]]]];
a[n_] := Module[{k}, For[k = 0, b[k, Floor@Sqrt[k], 9] != n, k++]; k];
Array[a, 20] (* Jean-François Alcover, Nov 21 2020, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A281147 A373484 A217187 * A136016 A257454 A305672
KEYWORD
nonn
AUTHOR
Claudio Meller, Jul 26 2012
EXTENSIONS
More terms from Alois P. Heinz, Jul 26 2012
STATUS
approved