login
A214384
T(n,k)=Number of nXnXn triangular 0..k arrays with no element lying outside the (possibly reversed) range delimited by its sw and se neighbors, and no element equal to its horizontal neighbors
12
2, 3, 4, 4, 14, 8, 5, 32, 94, 16, 6, 60, 456, 890, 32, 7, 100, 1506, 11048, 11700, 64, 8, 154, 3976, 74260, 445024, 211760, 128, 9, 224, 9044, 350232, 6981540, 29456216, 5247716, 256, 10, 312, 18480, 1305392, 65905056, 1232720402, 3183854216, 177440488, 512
OFFSET
1,1
COMMENTS
Table starts
..2.....3......4.......5........6.........7..........8...........9..........10
..4....14.....32......60......100.......154........224.........312.........420
..8....94....456....1506.....3976......9044......18480.......34812.......61512
.16...890..11048...74260...350232...1305392....4107248....11363940....28412824
.32.11700.445024.6981540.65905056.444106514.2347567992.10319444960.39220393240
LINKS
FORMULA
Empirical: rows n=1..5 are polynomials of degree n(n+1)/2 in k
EXAMPLE
Some solutions for n=3 k=3
....1......1......1......3......1......3......1......1......2......1......3
...2.1....1.2....1.2....3.1....1.2....1.3....2.0....1.0....1.3....1.0....3.1
..0.2.0..1.3.1..0.2.1..2.3.0..1.2.3..2.1.3..3.0.3..1.2.0..2.1.3..0.1.0..3.0.2
CROSSREFS
Row 2 is A159920(n+1)
Sequence in context: A265534 A214554 A185417 * A118022 A181368 A037848
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Jul 14 2012
STATUS
approved