login
Number of 3 X 3 X 3 triangular 0..n arrays with no element lying outside the (possibly reversed) range delimited by its sw and se neighbors.
1

%I #10 Jul 22 2018 08:44:00

%S 26,169,660,1951,4822,10507,20840,38421,66802,110693,176188,271011,

%T 404782,589303,838864,1170569,1604682,2164993,2879204,3779335,4902150,

%U 6289603,7989304,10055005,12547106,15533181,19088524,23296715,28250206

%N Number of 3 X 3 X 3 triangular 0..n arrays with no element lying outside the (possibly reversed) range delimited by its sw and se neighbors.

%C Row 3 of A214352.

%H R. H. Hardin, <a href="/A214353/b214353.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = (1/36)*n^6 + (7/15)*n^5 + (25/9)*n^4 + (15/2)*n^3 + (331/36)*n^2 + (151/30)*n + 1.

%F Conjectures from _Colin Barker_, Jul 22 2018: (Start)

%F G.f.: x*(26 - 13*x + 23*x^2 - 30*x^3 + 20*x^4 - 7*x^5 + x^6) / (1 - x)^7.

%F a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.

%F (End)

%e Some solutions for n=3:

%e ....1......1......2......1......2......1......3......2......3......2......0

%e ...2.0....1.1....2.1....1.1....2.2....1.2....3.1....0.3....0.3....1.3....1.0

%e ..3.2.0..0.3.1..3.1.3..0.3.0..2.2.0..2.1.2..3.1.0..0.3.2..0.1.3..1.2.3..3.1.0

%Y Cf. A214352.

%K nonn

%O 1,1

%A _R. H. Hardin_, Jul 13 2012