login
A214068
a(n) = floor((3/2)*floor((3/2)*n)).
4
0, 1, 4, 6, 9, 10, 13, 15, 18, 19, 22, 24, 27, 28, 31, 33, 36, 37, 40, 42, 45, 46, 49, 51, 54, 55, 58, 60, 63, 64, 67, 69, 72, 73, 76, 78, 81, 82, 85, 87, 90, 91, 94, 96, 99, 100, 103, 105, 108, 109, 112, 114, 117, 118, 121, 123, 126
OFFSET
0,3
COMMENTS
Also, numbers congruent to {0,1,4,6} mod 9.
FORMULA
a(n) = (18*n - 5 + 3*(-1)^n + (1 - i)*(-i)^n + (1 + i)*i^n)/8, where i = sqrt(-1).
a(n) = a(n-1) + a(n-4) - a(n-5).
G.f.: (x*(1 + 3*x + 2*x^2 + 3*x^3))/(1 - x - x^4 + x^5).
MATHEMATICA
f[n_]:=Floor[(3/2)Floor[3n/2]];
t=Table[f[n], {n, 0, 70}]
LinearRecurrence[{1, 0, 0, 1, -1}, {0, 1, 4, 6, 9}, 60] (* Harvey P. Dale, Jun 21 2021 *)
CROSSREFS
Sequence in context: A189167 A283794 A287003 * A330182 A330186 A284654
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jul 20 2012
STATUS
approved