This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A213350 8-quantum transitions in systems of N>=8 spin 1/2 particles, in columns by combination indices. 3
 1, 18, 180, 10, 1320, 220, 7920, 2640, 66, 41184, 22880, 1716, 192192, 160160, 24024, 364, 823680, 960960, 240240, 10920, 3294720, 5125120, 1921920, 174720, 1820, 12446720, 24893440, 13069056, 1980160, 61880, 44808192, 112020480 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 8,2 COMMENTS For a general discussion, please see A213343. This a(n) is for octuple-quantum transitions (q = 8). It lists the flattened triangle T(8;N,k) with rows N = 8,9,... and columns k = 0,..,floor((N-8)/2). REFERENCES See A213343 LINKS Stanislav Sykora, Table of n, a(n) for n = 8..2216 Stanislav Sykora, T(8;N,k) with rows N=8,..,100 and columns k=0,..,floor((N-8)/2) FORMULA Set q = 8 in: T(q;N,k) = 2^(N-q-2*k)*binomial(N,k)*binomial(N-k,q+k) EXAMPLE Starting rows of the triangle:    N | k = 0, 1, ..., floor((N-8)/2)    8 |    1    9 |   18   10 |  180   10   11 | 1320  220   12 | 7920 2640 66 PROG (PARI) See A213343; set thisq = 8 CROSSREFS Cf. A051288 (q=0), A213343 to A213349 (q=1 to 7), A213351 (q=9), A213352 (q= 10). Cf. A140325 (first row, with offset 8), A004314 (row sums). Sequence in context: A321951 A227023 A239581 * A052507 A071910 A121038 Adjacent sequences:  A213347 A213348 A213349 * A213351 A213352 A213353 KEYWORD nonn,tabl AUTHOR Stanislav Sykora, Jun 13 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 17 07:54 EST 2018. Contains 318192 sequences. (Running on oeis4.)