login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A213350 8-quantum transitions in systems of N>=8 spin 1/2 particles, in columns by combination indices. 3
1, 18, 180, 10, 1320, 220, 7920, 2640, 66, 41184, 22880, 1716, 192192, 160160, 24024, 364, 823680, 960960, 240240, 10920, 3294720, 5125120, 1921920, 174720, 1820, 12446720, 24893440, 13069056, 1980160, 61880, 44808192, 112020480 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

8,2

COMMENTS

For a general discussion, please see A213343.

This a(n) is for octuple-quantum transitions (q = 8).

It lists the flattened triangle T(8;N,k) with rows N = 8,9,... and columns k = 0,..,floor((N-8)/2).

REFERENCES

See A213343

LINKS

Stanislav Sykora, Table of n, a(n) for n = 8..2216

Stanislav Sykora, T(8;N,k) with rows N=8,..,100 and columns k=0,..,floor((N-8)/2)

FORMULA

Set q = 8 in: T(q;N,k) = 2^(N-q-2*k)*binomial(N,k)*binomial(N-k,q+k)

EXAMPLE

Starting rows of the triangle:

   N | k = 0, 1, ..., floor((N-8)/2)

   8 |    1

   9 |   18

  10 |  180   10

  11 | 1320  220

  12 | 7920 2640 66

PROG

(PARI) See A213343; set thisq = 8

CROSSREFS

Cf. A051288 (q=0), A213343 to A213349 (q=1 to 7), A213351 (q=9), A213352 (q= 10).

Cf. A140325 (first row, with offset 8), A004314 (row sums).

Sequence in context: A022583 A227023 A239581 * A052507 A071910 A121038

Adjacent sequences:  A213347 A213348 A213349 * A213351 A213352 A213353

KEYWORD

nonn,tabl

AUTHOR

Stanislav Sykora, Jun 13 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 20 03:34 EDT 2017. Contains 290823 sequences.