login
Decimal expansion of the real part of i!, where i = sqrt(-1).
12

%I #35 Dec 28 2023 13:10:57

%S 4,9,8,0,1,5,6,6,8,1,1,8,3,5,6,0,4,2,7,1,3,6,9,1,1,1,7,4,6,2,1,9,8,0,

%T 9,1,9,5,2,9,6,2,9,6,7,5,8,7,6,5,0,0,9,2,8,9,2,6,4,2,9,5,4,9,9,8,4,5,

%U 8,3,0,0,4,3,5,9,8,1,9,3,4,5,0,7,8,9,4,5,0,4,2,8,2,6,7,0,5,8,1,4,0,5,6,0,6

%N Decimal expansion of the real part of i!, where i = sqrt(-1).

%C Also the negated imaginary part of Gamma(i).

%H Stanislav Sykora, <a href="http://dx.doi.org/10.3247/SL2Math08.001">Mathematical Constants</a>, Stan's Library, Vol. II.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Particular_values_of_the_Gamma_function#Imaginary_unit">Particular values of the Gamma function</a>

%F i! = gamma(1+i) = i*gamma(i).

%F Equals (1/2)*Integral_{x=-1/e..0} LambertW(x)*sin(log(-LambertW(x)))-LambertW(-1,x)*sin(log(-LambertW(-1,x))) dx. - _Gleb Koloskov_, Oct 01 2021

%F Equals Integral_{x=0..+oo} exp(-x)*cos(log(x)) dx. - _Jianing Song_, Sep 27 2023

%F A212877^2 + A212878^2 = A090986 = Pi/sinh(Pi). - _Vaclav Kotesovec_, Dec 28 2023

%e 0.498015668118356042713691117462198...

%t RealDigits[Re[Gamma[I + 1]], 10, 105] (* _T. D. Noe_, May 29 2012 *)

%o (PARI) real(I*gamma(I))

%Y Cf. A212878 (-imag(i!)), A212879 (abs(i!)), A212880 (-arg(i!)), A090986.

%K nonn,cons,easy

%O 0,1

%A _Stanislav Sykora_, May 29 2012