login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211689
Number of -4..4 arrays x(i) of n+1 elements i=1..n+1 with x(i)+x(j), x(i+1)+x(j+1), -(x(i)+x(j+1)), and -(x(i+1)+x(j)) having two or three distinct values for every i<=n and j<=n
1
80, 216, 498, 1064, 2200, 4448, 8844, 17552, 34384, 67836, 132308, 260904, 509178, 1006144, 1969566, 3904484, 7675178, 15271538, 30158642, 60234204, 119509036, 239563440, 477465048, 960417468, 1922353398, 3879214910, 7795367130
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 4*a(n-1) +16*a(n-2) -80*a(n-3) -93*a(n-4) +694*a(n-5) +149*a(n-6) -3418*a(n-7) +910*a(n-8) +10491*a(n-9) -5972*a(n-10) -20678*a(n-11) +16520*a(n-12) +25848*a(n-13) -26344*a(n-14) -19141*a(n-15) +25313*a(n-16) +6692*a(n-17) -14094*a(n-18) +234*a(n-19) +4010*a(n-20) -760*a(n-21) -420*a(n-22) +120*a(n-23)
EXAMPLE
Some solutions for n=5
.-3....0...-3...-1...-3...-1...-2...-3....0....4....2...-4....4....0....0...-3
..3....2....1...-1....0....1...-1....1....3...-2....4...-2....0....3....2...-3
..3....0...-3....1....3...-1....3....0...-3....4....2...-4....4....0....0....3
.-3....2....1...-1...-3....1...-1...-2....0...-2....0...-2....0....3...-2....0
..3....0...-4...-1....3....0....0....0...-3...-1...-2....0...-2...-3...-4....3
.-3...-4....1...-1...-3...-1....2....1....0....0....0....4....0....0...-2...-3
CROSSREFS
Sequence in context: A044412 A044793 A359517 * A364719 A202439 A203355
KEYWORD
nonn
AUTHOR
R. H. Hardin Apr 18 2012
STATUS
approved