login
A211325
Number of (n+1) X (n+1) -3..3 symmetric matrices with every 2 X 2 subblock having sum zero and two or three distinct values.
1
24, 58, 126, 274, 572, 1202, 2470, 5118, 10466, 21560, 44066, 90582, 185338, 380818, 780392, 1604082, 3292390, 6772414, 13921038, 28660928, 58993382, 121571918, 250540314, 516800746, 1066237980, 2201452066, 4546640338, 9396025014
OFFSET
1,1
COMMENTS
Symmetry and 2 X 2 block sums zero implies that the diagonal x(i,i) are equal modulo 2 and x(i,j) = (x(i,i)+x(j,j))/2*(-1)^(i-j).
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) + 6*a(n-2) - 22*a(n-3) - 11*a(n-4) + 58*a(n-5) + 4*a(n-6) - 65*a(n-7) + 5*a(n-8) + 28*a(n-9) - 2*a(n-10) - 4*a(n-11).
Empirical g.f.: 2*x*(12 - 7*x - 96*x^2 + 38*x^3 + 267*x^4 - 70*x^5 - 307*x^6 + 57*x^7 + 141*x^8 - 14*x^9 - 22*x^10) / ((1 - 2*x)*(1 + x - x^2)*(1 - x - x^2)*(1 - 2*x^2)*(1 - x - 3*x^2 + x^3 + x^4)). - Colin Barker, Jul 16 2018
EXAMPLE
Some solutions for n=3:
..1..1..1.-1....3.-1..2.-1....0..1..1..1...-1..0.-1..0....1..0..2..0
..1.-3..1.-1...-1.-1..0.-1....1.-2..0.-2....0..1..0..1....0.-1.-1.-1
..1..1..1.-1....2..0..1..0....1..0..2..0...-1..0.-1..0....2.-1..3.-1
.-1.-1.-1..1...-1.-1..0.-1....1.-2..0.-2....0..1..0..1....0.-1.-1.-1
CROSSREFS
Sequence in context: A232937 A190104 A255968 * A290303 A044126 A044507
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 07 2012
STATUS
approved