login
Square array read by antidiagonals, in which column k starts with k plateaus of lengths k+1, k, k-1, k-2, k-3,..2 and of levels A000124: 1, 2, 4, 7, 11..., if k >= 1, connected by consecutive integers. After the last plateau the length remains 1.
1

%I #33 Mar 14 2015 11:43:30

%S 1,2,1,3,1,1,4,2,1,1,5,3,1,1,1,6,4,2,1,1,1,7,5,2,1,1,1,1,8,6,3,2,1,1,

%T 1,1,9,7,4,2,1,1,1,1,1,10,8,5,2,2,1,1,1,1,1,11,9,6,3,2,1,1,1,1,1,1,12,

%U 10,7,4,2,2,1,1,1,1,1,1,13,11,8,4,2,2

%N Square array read by antidiagonals, in which column k starts with k plateaus of lengths k+1, k, k-1, k-2, k-3,..2 and of levels A000124: 1, 2, 4, 7, 11..., if k >= 1, connected by consecutive integers. After the last plateau the length remains 1.

%C Column k contains k plateaus whose levels are the first k terms of A000124, therefore A000124(i) is the level of the i-th plateau of the column k when k -> infinity.

%C Column k contains the integers s>=1 repeated f(s) times, sorted, where f(s)=1 if s is not in A000124, otherwise, if A000124(c)=s, repeated f(s)=max(1,k+1-c) times. - _R. J. Mathar_, Jul 22 2012

%C It appears that this array can be represented by a structure in which the number of relevant nodes give A000005 (see also A210959). - _Omar E. Pol_, Jul 24 2012

%H Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/pol001plt.jpg">Illustration of initial terms of the columns 0..10</a>

%e Illustration of initial terms of the 4th column:

%e ------------------------------------------------------

%e Level Graphic

%e ------------------------------------------------------

%e 10 *

%e 9 *

%e 8 *

%e 7 * *

%e 6 *

%e 5 *

%e 4 * * *

%e 3 *

%e 2 * * * *

%e 1 * * * * *

%e 0

%e -------------------------------------------------------

%e Column 4: 1,1,1,1,1,2,2,2,2,3,4,4,4,5,6,7,7,8,9,10,...

%e -------------------------------------------------------

%e Array begins:

%e 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...

%e 2, 1, 1, 1, 1, 1, 1, 1, 1, 1,...

%e 3, 2, 1, 1, 1, 1, 1, 1, 1, 1,...

%e 4, 3, 2, 1, 1, 1, 1, 1, 1, 1,...

%e 5, 4, 2, 2, 1, 1, 1, 1, 1, 1,...

%e 6, 5, 3, 2, 2, 1, 1, 1, 1, 1,...

%e 7, 6, 4, 2, 2, 2, 1, 1, 1, 1,...

%e 8, 7, 5, 3, 2, 2, 2, 1, 1, 1,...

%e 9, 8, 6, 4, 2, 2, 2, 2, 1, 1,...

%p A000124i := proc(n)

%p local j;

%p for j from 0 do

%p if A000124(j) = n then

%p return j;

%p elif A000124(j) > n then

%p return -1 ;

%p end if;

%p end do:

%p end proc:

%p A210992 := proc(n,k)

%p local f,r,a,c;

%p f := k+1 ;

%p a := 1 ;

%p for r from 0 to n do

%p if f > 0 then

%p f := f-1;

%p else

%p a := a+1 ;

%p c := A000124i(a) ;

%p f := 0 ;

%p if c >= 0 then

%p f := max(0,k-c) ;

%p end if;

%p end if;

%p end do:

%p a ;

%p end proc: # _R. J. Mathar_, Jul 22 2012

%Y Columns 0-1: A000027, A028310.

%Y Cf. A000124, A195825, A210843, A210959, A211970.

%K nonn,tabl

%O 0,2

%A _Omar E. Pol_, Jun 30 2012