login
Triangle of coefficients of polynomials u(n,x) jointly generated with A209746; see the Formula section.
3

%I #13 Sep 08 2013 19:59:32

%S 1,1,2,2,5,4,3,12,16,8,5,25,49,44,16,8,50,127,166,112,32,13,96,301,

%T 513,504,272,64,21,180,670,1408,1808,1424,640,128,34,331,1427,3562,

%U 5641,5816,3824,1472,256,55,600,2939,8494,15981,20330,17520,9888

%N Triangle of coefficients of polynomials u(n,x) jointly generated with A209746; see the Formula section.

%C Row n begins with F(n) and ends with 2^(n-1), where F=A000045 (Fibonacci numbers)

%C Alternating row sums: 1,-1,1,-1,1,-1,1,-1,...

%C For a discussion and guide to related arrays, see A208510.

%C Subtriangle of the triangle given by (0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ....) DELTA (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Mar 24 2012

%C Riordan array (1/(1-x-x^2), (2*x+x^2)/(1-x-x^2)). - _Philippe Deléham_, Mar 24 2012

%F u(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x),

%F v(n,x)=(x+1)*u(n-1,x)+(x+1)*v(n-1,x),

%F where u(1,x)=1, v(1,x)=1.

%F T(n,k) = T(n-1, k) + 2*T(n-1,k-1) + T(n-2,k) + T(n-2,k-1), T(1,0) = T(2,0) = 1, T(2,1) = 2, T(n,k) = 0 if k<0 or if k>=n. - _Philippe Deléham_, Mar 24 2012

%e First five rows:

%e 1

%e 1...2

%e 2...5....4

%e 3...12...16...8

%e 5...25...49...44...16

%e First three polynomials u(n,x): 1, 1 + 2x, 2 + 5x + 4x^2.

%e (0, 1, 1, -1, 0, 0, 0, ...) DELTA (1, 1, 0, 0, 0, ...) begins :

%e 1

%e 0, 1

%e 0, 1, 2

%e 0, 2, 5, 4

%e 0, 3, 12, 16, 8

%e 0, 5, 25, 49, 44, 16 ... - _Philippe Deléham_, Mar 24 2012

%t u[1, x_] := 1; v[1, x_] := 1; z = 16;

%t u[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x];

%t v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x];

%t Table[Expand[u[n, x]], {n, 1, z/2}]

%t Table[Expand[v[n, x]], {n, 1, z/2}]

%t cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];

%t TableForm[cu]

%t Flatten[%] (* A209745 *)

%t Table[Expand[v[n, x]], {n, 1, z}]

%t cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];

%t TableForm[cv]

%t Flatten[%] (* A209746 *)

%Y Cf. A000045, A000079, A209746, A208510.

%K nonn,tabl

%O 1,3

%A _Clark Kimberling_, Mar 13 2012