login
A209532
Half the number of (n+1) X 7 0..2 arrays with every 2 X 2 subblock having exactly two distinct clockwise edge differences.
1
129, 1537, 16385, 196609, 2097153, 25165825, 268435457, 3221225473, 34359738369, 412316860417, 4398046511105, 52776558133249, 562949953421313, 6755399441055745, 72057594037927937, 864691128455135233
OFFSET
1,1
COMMENTS
Column 6 of A209534.
LINKS
FORMULA
Empirical: a(n) = a(n-1) + 128*a(n-2) - 128*a(n-3).
Conjectures from Colin Barker, Jul 11 2018: (Start)
G.f.: x*(129 + 1408*x - 1664*x^2) / ((1 - x)*(1 - 128*x^2)).
a(n) = 3*2^((7*n)/2 + 2) + 1 for n even.
a(n) = 2^((7*n)/2 + 7/2) + 1 for n odd.
(End)
EXAMPLE
Some solutions for n=4:
..0..1..2..1..2..1..2....0..1..2..1..2..1..0....1..2..1..2..1..2..1
..1..2..1..2..1..2..1....1..0..1..0..1..0..1....2..1..0..1..2..1..2
..0..1..0..1..0..1..0....2..1..2..1..0..1..2....1..2..1..0..1..2..1
..1..2..1..2..1..2..1....1..0..1..2..1..0..1....0..1..2..1..2..1..0
..2..1..2..1..0..1..2....0..1..0..1..2..1..0....1..0..1..0..1..2..1
CROSSREFS
Cf. A209534.
Sequence in context: A341552 A251095 A329727 * A233305 A268266 A230187
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 10 2012
STATUS
approved