login
Triangle of coefficients of polynomials v(n,x) jointly generated with A209131; see the Formula section.
3

%I #15 Jan 24 2020 03:26:24

%S 1,0,3,0,4,5,0,4,12,11,0,4,20,36,21,0,4,28,76,92,43,0,4,36,132,244,

%T 228,85,0,4,44,204,508,716,540,171,0,4,52,292,916,1732,1972,1252,341,

%U 0,4,60,396,1500,3564,5436,5196,2844,683,0,4,68,516,2292,6564

%N Triangle of coefficients of polynomials v(n,x) jointly generated with A209131; see the Formula section.

%C For a discussion and guide to related arrays, see A208510.

%C As triangle T(n,k) with 0 <= k <= n, it is (0, 4/3, -1/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (3, -4/3, -2/3, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Mar 21 2012

%C Row sums are powers of 3 (A000244). - _Philippe Deléham_, Mar 21 2012

%F u(n,x) = u(n-1,x) + (x+1)*v(n-1,x),

%F v(n,x) = 2x*u(n-1,x) + x*v(n-1,x),

%F where u(1,x)=1, v(1,x)=1.

%F T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k-1) + 2*T(n-2,k-2), T(1,0) = 1, T(2,0) = 0, T(2,1) = 3 and T(n,k) = 0 if k < 0 or if k >= n.- _Philippe Deléham_, Mar 21 2012

%F G.f.: (-1-2*x*y+x)*x*y/((1+x*y)*(2*x*y+x-1)). - _R. J. Mathar_, Aug 12 2015

%e First five rows:

%e 1;

%e 0, 3;

%e 0, 4, 5;

%e 0, 4, 12, 11;

%e 0, 4, 20, 36, 21;

%e First three polynomials v(n,x):

%e 1

%e 3x

%e 4x + 5x^2.

%t u[1, x_] := 1; v[1, x_] := 1; z = 16;

%t u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];

%t v[n_, x_] := 2 x*u[n - 1, x] + x*v[n - 1, x];

%t Table[Expand[u[n, x]], {n, 1, z/2}]

%t Table[Expand[v[n, x]], {n, 1, z/2}]

%t cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];

%t TableForm[cu]

%t Flatten[%] (* A209131 *)

%t Table[Expand[v[n, x]], {n, 1, z}]

%t cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];

%t TableForm[cv]

%t Flatten[%] (* A209132 *)

%Y Cf. A209131, A208510.

%K nonn,tabl

%O 1,3

%A _Clark Kimberling_, Mar 05 2012