%I #13 Jan 24 2020 03:26:35
%S 1,2,1,2,4,3,2,8,12,5,2,12,28,28,11,2,16,52,84,68,21,2,20,84,188,236,
%T 156,43,2,24,124,356,612,628,356,85,2,28,172,604,1324,1852,1612,796,
%U 171,2,32,228,948,2532,4500,5316,4020,1764,341,2,36,292,1404
%N Triangle of coefficients of polynomials u(n,x) jointly generated with A209132; see the Formula section.
%C For a discussion and guide to related arrays, see A208510.
%C Subtriangle of the triangle given by (1, 1, -2, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 2, -2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Mar 21 2012
%F u(n,x) = u(n-1,x) + (x+1)*v(n-1,x),
%F v(n,x) = 2x*u(n-1,x) + x*v(n-1,x),
%F where u(1,x)=1, v(1,x)=1.
%F From _Philippe Deléham_, Mar 21 2012: (Start)
%F As DELTA-triangle with 0 <= k <= n:
%F G.f.: (1-y*x+x^2-y*x^2-2*y^2*x^2)/(1-x-y*x-y*x^2-2*y^2*x^2).
%F T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k-1) + 2*T(n-2,k-2), T(0,0) = T(1,0) = T(2,1) = 1, T(2,0) = 2, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k > n. (End)
%e First five rows:
%e 1;
%e 2, 1;
%e 2, 4, 3;
%e 2, 8, 12, 5;
%e 2, 12, 28, 28, 11;
%e First three polynomials u(n,x):
%e 1
%e 2 + x
%e 2 + 4x + 3x^2
%e From _Philippe Deléham_, Mar 21 2012: (Start)
%e (1, 1, -2, 1, 0, 0, ...) DELTA (0, 1, 2, -2, 0, 0, ...) begins:
%e 1;
%e 1, 0;
%e 2, 1, 0;
%e 2, 4, 3, 0;
%e 2, 8, 12, 5, 0;
%e 2, 12, 28, 28, 11, 0;
%e 2, 16, 52, 84, 68, 21, 0;
%e 2, 20, 84, 188, 236, 156, 43, 0; (End)
%t u[1, x_] := 1; v[1, x_] := 1; z = 16;
%t u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];
%t v[n_, x_] := 2 x*u[n - 1, x] + x*v[n - 1, x];
%t Table[Expand[u[n, x]], {n, 1, z/2}]
%t Table[Expand[v[n, x]], {n, 1, z/2}]
%t cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
%t TableForm[cu]
%t Flatten[%] (* A209131 *)
%t Table[Expand[v[n, x]], {n, 1, z}]
%t cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
%t TableForm[cv]
%t Flatten[%] (* A209132 *)
%Y Cf. A209132, A208510.
%K nonn,tabl
%O 1,2
%A _Clark Kimberling_, Mar 05 2012