login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209008
Number of 4-bead necklaces labeled with numbers -n..n not allowing reversal, with sum zero and first and second differences in -n..n.
1
1, 3, 5, 10, 16, 26, 38, 55, 75, 101, 131, 168, 210, 260, 316, 381, 453, 535, 625, 726, 836, 958, 1090, 1235, 1391, 1561, 1743, 1940, 2150, 2376, 2616, 2873, 3145, 3435, 3741, 4066, 4408, 4770, 5150, 5551, 5971, 6413, 6875, 7360, 7866, 8396, 8948, 9525, 10125
OFFSET
1,2
COMMENTS
Row 4 of A209007.
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5).
Conjectures from Colin Barker, Jul 07 2018: (Start)
G.f.: x*(1 - 2*x^2 + 3*x^3 - x^4) / ((1 - x)^4*(1 + x)).
a(n) = (4*n^3 + 6*n^2 + 20*n + 48) / 48 for n even.
a(n) = (4*n^3 + 6*n^2 + 20*n + 18) / 48 for n odd.
(End)
EXAMPLE
Some solutions for n=6:
-2 0 -3 -3 -1 -3 -2 -3 -2 -3 -1 -2 -1 -2 -1 -2
-2 0 0 -2 1 -3 1 -1 -1 1 -1 1 0 0 0 2
2 0 3 3 -1 3 0 3 2 3 1 1 -1 0 0 0
2 0 0 2 1 3 1 1 1 -1 1 0 2 2 1 0
CROSSREFS
Cf. A209007.
Sequence in context: A184800 A350237 A267151 * A032279 A070558 A233758
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 04 2012
STATUS
approved