login
Pascal's triangle matrix augmented with a right border of 1's.
2

%I #15 Jul 19 2024 11:36:24

%S 1,1,1,1,1,1,1,2,1,1,1,3,3,1,1,1,4,6,4,1,1,1,5,10,10,5,1,1,1,6,15,20,

%T 15,6,1,1,1,7,21,35,35,21,7,1,1,1,8,28,56,70,56,28,8,1,1,1,9,36,84,

%U 126,126,84,36,9,1,1,1,10,45,120,210,252,210,120,45

%N Pascal's triangle matrix augmented with a right border of 1's.

%C The eigensequence of this triangle starts as 1, 2, 4, 9, 23, 65,... (cf. A007476).

%C The flattened sequence differs from A135225 only by an additional leading 1.

%F T(n,n)=1. T(n,k) = A007318(n-1,k) for k<n.

%e First few rows of the triangle =

%e 1;

%e 1, 1;

%e 1, 1, 1;

%e 1, 2, 1, 1;

%e 1, 3, 3, 1, 1;

%e 1, 4, 6, 4, 1, 1;

%e 1, 5, 10, 10, 5, 1, 1;

%e 1, 6, 15, 20, 15, 6, 1, 1;

%e 1, 7, 21, 35, 35, 21, 7, 1, 1;

%e 1, 8, 28, 56, 70, 56, 28, 8, 1, 1;

%e 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 1;

%e 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 1;

%e ...

%p 208891 := proc(n,k)

%p if n <0 or k<0 or k>n then

%p 0;

%p elif n = k then

%p 1 ;

%p else

%p binomial(n-1,k) ;

%p end if;

%p end proc:

%p seq(seq(A208891(n,k),k=0..n),n=0..12) ; # _R. J. Mathar_, Jul 19 2024

%Y Cf. A007318, A007476

%K nonn,easy,tabl

%O 0,8

%A _Gary W. Adamson_, Mar 03 2012