login
A208840
T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 1 1 and 1 1 0 vertically
10
2, 4, 4, 6, 16, 6, 10, 36, 36, 9, 16, 100, 78, 81, 14, 26, 256, 282, 171, 196, 22, 42, 676, 768, 855, 406, 484, 35, 68, 1764, 2430, 2421, 3010, 990, 1225, 56, 110, 4624, 7086, 9801, 8736, 11242, 2485, 3136, 90, 178, 12100, 21588, 31419, 49126, 33088, 44275
OFFSET
1,1
COMMENTS
Table starts
..2....4....6.....10.....16.......26.......42........68........110.........178
..4...16...36....100....256......676.....1764......4624......12100.......31684
..6...36...78....282....768.....2430.....7086.....21588......64230......193554
..9...81..171....855...2421.....9801....31419....116919.....394965.....1419849
.14..196..406...3010...8736....49126...169974....833364....3166030....14462714
.22..484..990..11242..33088...272206...992574...6800596...28280758...173714530
.35.1225.2485..44275.131355..1644265..6206445..62470275..277136755..2417186345
.56.3136.6328.179032.533568.10399480.40122936.613538688.2842543480.36689660504
LINKS
FORMULA
Empirical for row n:
n=1: a(k)=a(k-1)+a(k-2)
n=2: a(k)=2*a(k-1)+2*a(k-2)-a(k-3)
n=3: a(k)=2*a(k-1)+4*a(k-2)-3*a(k-3)
n=4: a(k)=2*a(k-1)+7*a(k-2)-6*a(k-3)
n=5: a(k)=2*a(k-1)+12*a(k-2)-11*a(k-3)
n=6: a(k)=2*a(k-1)+20*a(k-2)-19*a(k-3)
n=7: a(k)=2*a(k-1)+33*a(k-2)-32*a(k-3)
EXAMPLE
Some solutions for n=4 k=3
..1..0..0....1..1..1....1..1..1....1..0..1....0..1..0....0..1..0....0..1..1
..0..1..1....0..1..0....1..1..0....1..0..0....1..1..0....1..0..1....0..1..1
..1..0..0....0..1..0....1..1..1....1..1..1....0..1..0....0..1..0....0..1..1
..0..1..1....0..1..1....1..1..0....1..0..0....0..1..0....1..0..0....1..1..1
CROSSREFS
Column 1 is A001611(n+2)
Column 2 is A207436
Column 3 is A208103
Row 1 is A006355(n+2)
Row 2 is A206981
Row 3 is A208689
Sequence in context: A208501 A207589 A208069 * A208688 A207774 A207661
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Mar 01 2012
STATUS
approved