login
Triangle of coefficients of polynomials u(n,x) jointly generated with A208758; see the Formula section.
4

%I #14 Jan 22 2020 20:13:30

%S 1,1,2,1,2,6,1,2,8,16,1,2,10,24,44,1,2,12,32,76,120,1,2,14,40,112,232,

%T 328,1,2,16,48,152,368,704,896,1,2,18,56,196,528,1200,2112,2448,1,2,

%U 20,64,244,712,1824,3840,6288,6688,1,2,22,72,296,920,2584,6144

%N Triangle of coefficients of polynomials u(n,x) jointly generated with A208758; see the Formula section.

%C For a discussion and guide to related arrays, see A208510.

%C Subtriangle of the triangle (1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Mar 18 2012

%F u(n,x) = u(n-1,x) + 2x*v(n-1,x),

%F v(n,x) = x*u(n-1,x) + 2x*v(n-1,x),

%F where u(1,x)=1, v(1,x)=1.

%F From _Philippe Deléham_, Mar 18 2012: (Start)

%F As DELTA-triangle with 0 <= k <= n:

%F G.f.: (1-2*y*x+2*y*x^2-2*y^2*x^2)/(1-x-2*y*x+2*y*x^2-2*y^2*x^2).

%F T(n,k) = T(n-1,k) + 2*T(n-1,k-1) -2*T(n-2,k-1) + 2*T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = 1, T(1,1) = T(2,2) = 0, T(2,1) = 2 and T(n,k) = 0 if k < 0 or if k > n. (End)

%e First five rows:

%e 1;

%e 1, 2;

%e 1, 2, 6;

%e 1, 2, 8, 16;

%e 1, 2, 10, 24, 44;

%e First five polynomials u(n,x):

%e 1

%e 1 + 2x

%e 1 + 2x + 6x^2

%e 1 + 2x + 8x^2 + 16x^3

%e 1 + 2x + 10x^2 + 24x^3 + 44x^4

%e From _Philippe Deléham_, Mar 18 2012: (Start)

%e (1, 0, -1, 1, 0, 0, ...) DELTA (0, 2, 1, -1, 0, 0, ...) begins:

%e 1

%e 1, 0

%e 1, 2, 0

%e 1, 2, 6, 0

%e 1, 2, 8, 16, 0

%e 1, 2, 10, 24, 44, 0

%e 1, 2, 12, 32, 76, 120, 0

%e 1, 2, 14, 40, 112, 232, 328, 0; (End)

%t u[1, x_] := 1; v[1, x_] := 1; z = 16;

%t u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];

%t v[n_, x_] := x*u[n - 1, x] + 2 x*v[n - 1, x];

%t Table[Expand[u[n, x]], {n, 1, z/2}]

%t Table[Expand[v[n, x]], {n, 1, z/2}]

%t cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];

%t TableForm[cu]

%t Flatten[%] (* A208757 *)

%t Table[Expand[v[n, x]], {n, 1, z}]

%t cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];

%t TableForm[cv]

%t Flatten[%] (* A208758 *)

%Y Cf. A208758, A208510.

%K nonn,tabl

%O 1,3

%A _Clark Kimberling_, Mar 02 2012