OFFSET
1,1
COMMENTS
Row 4 of A207808.
LINKS
Robert Israel and R. H. Hardin, Table of n, a(n) for n = 1..1460 (n = 1..210 from R. H. Hardin)
Robert Israel, Maple code to verify recursion
Index entries for linear recurrences with constant coefficients, signature (2,13,4,-12,1,1).
FORMULA
Empirical: a(n) = 2*a(n-1) +13*a(n-2) +4*a(n-3) -12*a(n-4) +a(n-5) +a(n-6)
From Robert Israel, Jul 03 2016: (Start)
The empirical recursion is true: see link for Maple verification.
G.f.: (10*x+80*x^2+40*x^3-110*x^4+10*x^5+10*x^6)/(1-2*x-13*x^2-4*x^3+12*x^4-x^5-x^6). (End)
EXAMPLE
Some solutions for n=4:
..0..1..1..0....0..1..0..1....0..1..1..0....0..1..1..0....1..0..1..1
..1..1..0..0....1..0..1..1....0..1..1..1....0..1..0..1....0..1..0..0
..1..1..0..0....1..0..1..0....1..1..0..1....0..1..0..1....0..1..0..0
..0..1..1..1....1..1..0..0....1..1..0..1....1..1..0..1....1..0..1..0
MAPLE
f:= gfun:-rectoproc({a(n)=2*a(n-1) +13*a(n-2) +4*a(n-3) -12*a(n-4) +a(n-5) +a(n-6), seq(a(i)=[10, 100, 370, 1970, 9040, 43990][i], i=1..6)}, a(n), remember):
map(f, [$1..50]); # Robert Israel, Jul 03 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 20 2012
STATUS
approved