login
Number of (n+1)X6 0..2 arrays with every 2X3 or 3X2 subblock having exactly one clockwise edge increases
1

%I #5 Mar 31 2012 12:37:14

%S 4371,2244,2094,3408,4944,7584,13752,20208,31158,55920,81936,125208,

%T 223776,327744,500832,895104,1310976,2003328,3580416,5243904,8013312,

%U 14321664,20975616,32053248,57286656,83902464,128212992,229146624

%N Number of (n+1)X6 0..2 arrays with every 2X3 or 3X2 subblock having exactly one clockwise edge increases

%C Column 5 of A207050

%H R. H. Hardin, <a href="/A207047/b207047.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 4*a(n-3) for n>13

%e Some solutions for n=4

%e ..1..0..2..2..0..0....2..0..0..2..1..1....2..2..0..0..2..1....2..2..2..2..1..0

%e ..1..1..2..2..2..0....0..0..0..1..1..1....2..0..0..0..1..1....1..1..2..2..2..0

%e ..1..1..1..2..2..2....0..0..1..1..1..0....0..0..0..1..1..1....1..1..1..2..2..2

%e ..0..1..1..1..2..2....0..1..1..1..2..2....0..0..1..1..1..0....2..1..1..1..2..2

%e ..0..0..1..1..1..1....1..1..1..2..2..2....0..1..1..1..2..2....2..2..1..1..1..1

%K nonn

%O 1,1

%A _R. H. Hardin_ Feb 14 2012