The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A206483 The matching number of the rooted tree having Matula-Goebel number n. 3

%I #22 Jan 21 2022 09:29:21

%S 0,1,1,1,2,2,1,1,2,2,2,2,2,2,3,1,2,3,1,2,2,3,3,2,3,3,3,2,2,3,3,1,3,2,

%T 3,3,2,2,3,2,3,3,2,3,4,3,3,2,2,3,3,3,1,4,4,2,2,3,2,3,3,3,3,1,4,4,2,2,

%U 4,3,2,3,3,3,4,2,3,4,3,2,4,3,3,3,3,3,3,3,2,4,3,3,4,4,3,2,3,3,4,3,3,3,4,3,4,2,2,4,3,4

%N The matching number of the rooted tree having Matula-Goebel number n.

%C A matching in a graph is a set of edges, no two of which have a vertex in common. The matching number of a graph is the maximum of the cardinalities of all the matchings in the graph. Consequently, the matching number of a graph is the degree of the matching-generating polynomial of the graph (see the MathWorld link).

%C The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.

%C After activating the Maple program, which yields the sequence, the command m(n) will yield the matching-generating polynomial of the rooted tree corresponding to the Matula-Goebel number n.

%D C. D. Godsil, Algebraic Combinatorics, Chapman & Hall, New York, 1993.

%H É. Czabarka, L. Székely, and S. Wagner, <a href="https://doi.org/10.1016/j.dam.2009.07.004">The inverse problem for certain tree parameters</a>, Discrete Appl. Math., 157, 2009, 3314-3319.

%H E. Deutsch, <a href="http://arxiv.org/abs/1111.4288"> Rooted tree statistics from Matula numbers</a>, arXiv:1111.4288 [math.CO], 2011.

%H F. Goebel, <a href="http://dx.doi.org/10.1016/0095-8956(80)90049-0">On a 1-1-correspondence between rooted trees and natural numbers</a>, J. Combin. Theory, B 29 (1980), 141-143.

%H I. Gutman and A. Ivic, <a href="http://dx.doi.org/10.1016/0012-365X(95)00182-V">On Matula numbers</a>, Discrete Math., 150, 1996, 131-142.

%H I. Gutman and Yeong-Nan Yeh, <a href="http://www.emis.de/journals/PIMB/067/3.html">Deducing properties of trees from their Matula numbers</a>, Publ. Inst. Math., 53 (67), 1993, 17-22.

%H D. W. Matula, <a href="http://www.jstor.org/stable/2027327">A natural rooted tree enumeration by prime factorization</a>, SIAM Rev. 10 (1968) 273.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Matching-Generating Polynomial.html">Matching-Generating Polynomial</a>

%H <a href="/index/Mat#matula">Index entries for sequences related to Matula-Goebel numbers</a>

%F Define b(n) (c(n)) to be the generating polynomials of the matchings of the rooted tree with Matula-Goebel number n that contain (do not contain) the root, with respect to the size of the matching (a k-matching has size k). We have the following recurrence for the pair M(n)=[b(n),c(n)]. M(1)=[0,1]; if n=p(t) (=the t-th prime), then M(n)=[xc(t),b(t)+c(t)]; if n=rs (r,s,>=2), then M(n)=[b(r)c(s)+c(r)b(s), c(r)c(s)]. Then m(n)=b(n)+c(n) is the generating polynomial of the matchings of the rooted tree with respect to the size of the matchings (called the matching-generating polynomial). The matching number is the degree of this polynomial.

%e a(11)=2 because the rooted tree corresponding to n=11 is a path abcde on 5 vertices. We have matchings with 2 edges (for example, (ab, cd)) but not with 3 edges.

%p with(numtheory): N := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 1 elif bigomega(n) = 1 then 1+N(pi(n)) else N(r(n))+N(s(n))-1 end if end proc: M := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then [0, 1] elif bigomega(n) = 1 then [x*M(pi(n))[2], M(pi(n))[1]+M(pi(n))[2]] else [M(r(n))[1]*M(s(n))[2]+M(r(n))[2]*M(s(n))[1], M(r(n))[2]*M(s(n))[2]] end if end proc: m := proc (n) options operator, arrow: sort(expand(M(n)[1]+M(n)[2])) end proc: seq(degree(m(n)), n = 1 .. 110);

%Y Cf. A202853.

%K nonn

%O 1,5

%A _Emeric Deutsch_, Feb 14 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 13 05:24 EDT 2024. Contains 372498 sequences. (Running on oeis4.)