

A206038


Values of the difference d for 4 primes in arithmetic progression with the minimal start sequence {5 + j*d}, j = 0 to 3.


9



6, 12, 18, 42, 48, 54, 84, 96, 126, 132, 252, 348, 396, 426, 438, 474, 594, 636, 642, 648, 678, 804, 858, 1176, 1218, 1272, 1302, 1314, 1362, 1428, 1482, 1566, 1692, 1728, 1896, 1992, 2064, 2106, 2238, 2394, 2442, 2574, 2616, 2688, 2694, 2706, 2832, 2856, 2898
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The computations were done without any assumptions on the form of d.


LINKS

Sameen Ahmed Khan, Table of n, a(n) for n = 1..10000
S. A. Khan, Primes in GeometricArithmetic Progression, arXiv preprint arXiv:1203.2083, 2012.  From N. J. A. Sloane, Sep 15 2012


EXAMPLE

d = 18 then {5, 5 + 1*18, 5 + 2*18, 5 + 3*18} = {5, 23, 41, 59}, which is 4 primes in arithmetic progression.


MATHEMATICA

t={}; Do[If[PrimeQ[{5, 5 + d, 5 + 2*d, 5 + 3*d}] == {True, True, True, True}, AppendTo[t, d]], {d, 3000}]; t


CROSSREFS

Cf. A040976, A206037  A206045.
Sequence in context: A176682 A226640 A067143 * A205859 A288794 A177708
Adjacent sequences: A206035 A206036 A206037 * A206039 A206040 A206041


KEYWORD

nonn


AUTHOR

Sameen Ahmed Khan, Feb 03 2012


STATUS

approved



