OFFSET
1,1
COMMENTS
All terms == 5 mod 6. - Zak Seidov, Jan 01 2013
There are no two consecutive primes in the sequence, while there are such primes p=prime(m) that q=prime(m+2) is also a term.
First such p's are at indices 554, 908, 1902, 2588, 3035, 5320, 6213, 6881, 7853, 8262, which correspond to 10237391, 15442121, 27374771, 36040469, 41216027, 66544301, 76313597, 83565611, 93112589, 97515359 (respectively). Note that a(554) = 10237391 = A226657(31). - Zak Seidov, Jul 01 2015
Primes p such that A013632(p) = 62. - Robert Israel, Jul 02 2015
LINKS
M. F. Hasler, Table of n, a(n) for n = 1..8496 (all terms up to 10^8).
MAPLE
p:= 2:
count:= 0:
while count < 40 do
q:= nextprime(p);
if q - p = 62 then
count:= count+1;
A[count]:= p;
fi;
p:= q;
od:
seq(A[i], i=1..count); # Robert Israel, Jul 02 2015
MATHEMATICA
Select[Prime@ Range@ 120000, NextPrime@ # - # == 62 &] (* Michael De Vlieger, Jul 01 2015 *)
Select[Partition[Prime[Range[120000]], 2, 1], #[[2]]-#[[1]]==62&][[All, 1]] (* Harvey P. Dale, Apr 01 2017 *)
PROG
(PARI) g=62; c=o=0; forprime(p=1, default(primelimit), (-o+o=p)==g&write("c:/temp/b204669.txt", c++" "p-g)) \\ M. F. Hasler, Jan 18 2012
(Magma) [n: n in [2..2*10^6 ] | (NextPrime(n)-NextPrime(n-1)) eq 62]; // Vincenzo Librandi, Jul 02 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 17 2012
STATUS
approved