login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204669
Primes p such that q-p = 62, where q is the next prime after p.
2
34061, 190409, 248909, 295601, 305147, 313409, 473027, 479639, 531731, 633497, 682079, 693881, 724331, 777479, 877469, 896201, 1011827, 1088309, 1137341, 1152527, 1179047, 1181777, 1190081, 1210289, 1216619, 1226117, 1272749, 1281587, 1286711, 1305449, 1343801, 1345361, 1357361, 1464179
OFFSET
1,1
COMMENTS
All terms == 5 mod 6. - Zak Seidov, Jan 01 2013
There are no two consecutive primes in the sequence, while there are such primes p=prime(m) that q=prime(m+2) is also a term.
First such p's are at indices 554, 908, 1902, 2588, 3035, 5320, 6213, 6881, 7853, 8262, which correspond to 10237391, 15442121, 27374771, 36040469, 41216027, 66544301, 76313597, 83565611, 93112589, 97515359 (respectively). Note that a(554) = 10237391 = A226657(31). - Zak Seidov, Jul 01 2015
Primes p such that A013632(p) = 62. - Robert Israel, Jul 02 2015
LINKS
MAPLE
p:= 2:
count:= 0:
while count < 40 do
q:= nextprime(p);
if q - p = 62 then
count:= count+1;
A[count]:= p;
fi;
p:= q;
od:
seq(A[i], i=1..count); # Robert Israel, Jul 02 2015
MATHEMATICA
Select[Prime@ Range@ 120000, NextPrime@ # - # == 62 &] (* Michael De Vlieger, Jul 01 2015 *)
Select[Partition[Prime[Range[120000]], 2, 1], #[[2]]-#[[1]]==62&][[All, 1]] (* Harvey P. Dale, Apr 01 2017 *)
PROG
(PARI) g=62; c=o=0; forprime(p=1, default(primelimit), (-o+o=p)==g&write("c:/temp/b204669.txt", c++" "p-g)) \\ M. F. Hasler, Jan 18 2012
(Magma) [n: n in [2..2*10^6 ] | (NextPrime(n)-NextPrime(n-1)) eq 62]; // Vincenzo Librandi, Jul 02 2015
CROSSREFS
Sequence in context: A252549 A231196 A212229 * A344666 A227699 A234820
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 17 2012
STATUS
approved