login
Periodic sequence 1,0,1,..., arranged in a triangle.
5

%I #43 Dec 02 2021 19:57:00

%S 1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,

%T 0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,

%U 1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1

%N Periodic sequence 1,0,1,..., arranged in a triangle.

%C Binomial transform is A130781.

%C Row sums: 1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 9, 9, ... = A004396(n+1) = A131737 (n+2) .

%C Diagonal sums: 1, 0, 2, 1, 1, 3, 3, 1, 5, 3, 2, 6, 5, 2, 8, 5, 3, 9, 7, 3, 11, 7, 4, 12, 9, 4, 14, 9, 5, 15, ..

%C Essentially the same as A141571 and A011655. - _R. J. Mathar_, Jan 16 2012

%C As sequence a(n) this is the characteristic sequence for the mod m reduced odd numbers (i.e., gcd(2*n+1,m)=1, n >= 0) for each modulus m from 3*A003586 = [3,6,9,12,18,24,27,36,48,...]. - _Wolfdieter Lang_, Feb 04 2012

%C Disregarding the triangle: a(A173732(n)) = 1. - _Reinhard Zumkeller_, Apr 29 2012

%D Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,1).

%F If k==0 mod(3), T(n+k,k) = 1, 0, 1, 1, 0, 1, 1, 0, 1, ... (A204418)

%F If k==1 mod(3), T(n+k,k) = 1, 0, 0, 1, 0, 0, 1, 0, 0, ... (A079978)

%F If n==2 mod(3), T(n+k,k) = 1, 1, 1, 1, 1, 1, 1, 1, 1, ... (A000012)

%F a(A016777(n)) = 0.

%F G.f.:(1+x^2)/(1-x^3).

%F G.f.: U(0) where U(k)= 1 + x^2/(1 - x/(x + 1/U(k+1))); (continued fraction, 3-step). - _Sergei N. Gladkovskii_, Oct 17 2012

%e Triangle begins:

%e 1;

%e 0, 1;

%e 1, 0, 1;

%e 1, 0, 1, 1;

%e 0, 1, 1, 0, 1;

%e 1, 0, 1, 1, 0, 1;

%e 1, 0, 1, 1, 0, 1, 1;

%e 0, 1, 1, 0, 1, 1, 0, 1;

%e 1, 0, 1, 1, 0, 1, 1, 0, 1;

%o (PARI) a(n)=n%3!=1 \\ _Charles R Greathouse IV_, Jul 13 2016

%Y Cf. A011655.

%K nonn,tabl,easy

%O 0,1

%A _Philippe Deléham_, Jan 15 2012