login
Permanent of the n-th principal submatrix of A003983.
2

%I #49 Oct 29 2024 12:08:00

%S 1,1,3,19,209,3545,85803,2807723,119377321,6397099105,421772316915,

%T 33552418294339,3168847554832961,350514662908385321,

%U 44885099167514403963,6587836555407268741019,1098597117953239632728089,206564512095561068049417265,43495029251774783469442768323

%N Permanent of the n-th principal submatrix of A003983.

%H Alois P. Heinz, <a href="/A204262/b204262.txt">Table of n, a(n) for n = 0..264</a>

%H Discussion at dxdy.ru, <a href="https://dxdy.ru/topic154879.html">Permanent of a matrix</a>, (in Russian) (2023).

%H Terence Tao, <a href="https://mathoverflow.net/a/450607/231922">Remarkable recursions for the A204262</a>, answer to question on MathOverflow (2023).

%F From _Mikhail Kurkov_, Aug 03 2023: (Start)

%F a(n) = f(n, n, 0) for n >= 0 where f(n, q, x) = g(n, q, x) + f(n, q-1, q) - g(n, q, q) for n >= 0, q > 0 with f(n, 0, x) = n!*x^n for n >= 0 and where g(n, q, x) = Integral (n-q)^2*f(n-1, q, x) dx for n > 0, q > 0 (formula due to user with the nickname Null on a scientific forum dxdy.ru).

%F a(n) = R(n-1, 0) for n > 0 with a(0) = 1 where R(n, q) = Sum_{j=0..q+1} binomial(q+1, j)*(j+1)*R(n-1, j) for n > 0, q >= 0 with R(0, q) = 1 for q >= 0.

%F Both results were proved by _Terence Tao_, see Links section. (End)

%F Conjecture: Limit_{n->oo} (a(n)/n!^2)^(1/n) = 2/Pi. - _Vaclav Kotesovec_, Aug 05 2023

%p with(LinearAlgebra):

%p a:= n-> `if`(n=0, 1, Permanent(Matrix(n, ()-> min(args)))):

%p seq(a(n), n=0..16); # _Alois P. Heinz_, Nov 14 2016

%t f[i_, j_] := Min[i, j];

%t m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]

%t TableForm[m[8]] (* 8x8 principal submatrix *)

%t Flatten[Table[f[i, n + 1 - i],

%t {n, 1, 12}, {i, 1, n}]] (* A003983 *)

%t Permanent[m_] :=

%t With[{a = Array[x, Length[m]]},

%t Coefficient[Times @@ (m.a), Times @@ a]];

%t Table[Permanent[m[n]], {n, 1, 15}] (* A204262 *)

%o (PARI) a(n)={my(S,z,v=vector(n));for(i=0,n!-1,v=numtoperm(n,i);z=1;for(j=1,n,z*= n+1-max(j,v[j]));S+=z);return(S)} \\ _R. J. Cano_, Nov 14 2016

%o (PARI) upto(n)=my(v1, x='x); v1=vector(n+1, i, i--; i!*x^i); for(i=1, n, for(j=i, n, my(A=intformal((j-i)^2*v1[j])); v1[j+1] = A + subst(v1[j+1] - A, x, i))); v1 \\ _Mikhail Kurkov_, Aug 03 2023

%Y Cf. A003983, A204264.

%K nonn,changed

%O 0,3

%A _Clark Kimberling_, Jan 14 2012

%E a(0)=1 prepended and more terms added by _Alois P. Heinz_, Nov 14 2016