%I #5 Mar 31 2012 12:37:00
%S 32,121,121,447,851,447,1579,6586,6586,1579,5352,45307,144184,45307,
%T 5352,17559,276516,2774984,2774984,276516,17559,56219,1512850,
%U 45390107,157316750,45390107,1512850,56219,176797,7559349,632607409,7594654075
%N T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with column and row pair sums b(i,j)=a(i,j)+a(i,j-1) and c(i,j)=a(i,j)+a(i-1,j) such that rows of b(i,j) and columns of c(i,j) are lexicographically nondecreasing
%C Table starts
%C .....32......121.........447............1579................5352
%C ....121......851........6586...........45307..............276516
%C ....447.....6586......144184.........2774984............45390107
%C ...1579....45307.....2774984.......157316750..........7594654075
%C ...5352...276516....45390107......7594654075.......1111763853732
%C ..17559..1512850...632607409....307121002440.....136086136646160
%C ..56219..7559349..7690733410..10649020852202...14200017143149033
%C .176797.35013044.83135996535.323057300197928.1287846430551372962
%H R. H. Hardin, <a href="/A203965/b203965.txt">Table of n, a(n) for n = 1..111</a>
%e Some solutions for n=4 k=3
%e ..2..1..1..1....2..1..1..1....1..2..2..2....1..1..0..0....1..1..0..2
%e ..1..2..2..2....1..2..2..2....1..2..2..2....1..1..2..2....1..1..2..2
%e ..1..2..2..2....2..2..2..2....1..2..2..2....0..2..2..2....1..1..2..2
%e ..2..2..2..2....2..2..2..2....2..2..2..2....2..1..2..2....0..2..2..1
%e ..2..2..2..2....2..2..2..2....2..2..2..2....1..2..2..2....1..2..2..1
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_ Jan 08 2012