login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203611
Sum_{k=0..n} C(k-1,2*k-1-n)*C(k,2*k-n).
4
1, 1, 1, 3, 7, 16, 39, 95, 233, 577, 1436, 3590, 9011, 22691, 57299, 145043, 367931, 935078, 2380405, 6068745, 15492702, 39598631, 101323446, 259522398, 665332007, 1707137941, 4383662419, 11264675925, 28966161253, 74530441162, 191879611399, 494265165151
OFFSET
0,4
COMMENTS
For the connection with Fibonacci meanders classified by maximal run length of 1s see the link.
Apparently the number of grand Motzkin paths of length n+1 that avoid UU. - David Scambler, Jul 04 2013
LINKS
Jean-Luc Baril, Sergey Kirgizov, Rémi Maréchal, and Vincent Vajnovszki, Grand Dyck paths with air pockets, arXiv:2211.04914 [math.CO], 2022.
Jean-Luc Baril and José L. Ramírez, Fibonacci and Catalan paths in a wall, 2023.
Peter Luschny, Fibonacci meanders.
FORMULA
For n>0 let A=floor(n/2), R=n-1, B=A-R/2+1, C=A+1, D=A-R and Z=(n+1)/2 if n mod 2 = 1, otherwise Z=n^2*(n+2)/16. Then a(n) = Z*Hypergeometric([1,C,C+1,D,D],[B,B,B-1/2,B+1/2],1/16).
G.f.: 2*x/((1+x-x^2)*sqrt((x^2+x+1)*(x^2-3*x+1))-x^4+2*x^3+x^2+2*x-1). - Mark van Hoeij, May 06 2013
a(n) ~ phi^(2*n + 1) / (2 * 5^(1/4) * sqrt(Pi*n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 08 2019
a(n) = hypergeom([-n/2, 1 - n/2, (1-n)/2, (1-n)/2], [1, -n, 1 - n], 16). - Peter Luschny, Mar 24 2023
D-finite with recurrence n*a(n) +(-n-1)*a(n-1) +2*(-2*n+5)*a(n-2) +(-n-3)*a(n-3) +3*(n-5)*a(n-5) +(-n+6)*a(n-6)=0. - R. J. Mathar, Nov 22 2024
MAPLE
a := n -> hypergeom([-n/2, 1 - n/2, (1-n)/2, (1-n)/2], [1, -n, 1 - n], 16):
seq(simplify(a(n)), n = 0..31); # Peter Luschny, Mar 24 2023
MATHEMATICA
a[n_] := Module[{a, r, b, c, d, z}, If[n == 0, Return[1]]; a = Quotient[n, 2]; r = n-1; b = a-r/2+1; c = a+1; d = a-r; z = If[Mod[n, 2] == 1, (n+1)/2, n^2*(n+2)/16]; z*HypergeometricPFQ[{1, c, c+1, d, d}, {b, b, b-1/2, b+1/2}, 1/16] ]; Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Jun 27 2013, translated from Maple *)
Table[Sum[Binomial[k-1, 2k-1-n]Binomial[k, 2k-n], {k, 0, n}], {n, 0, 40}] (* Harvey P. Dale, May 25 2014 *)
PROG
(PARI) x='x+O('x^66); Vec( 2*x/((1+x-x^2) * sqrt((x^2+x+1) * (x^2-3*x+1)) -x^4 +2*x^3 +x^2 +2*x -1) ) \\ Joerg Arndt, May 06 2013
CROSSREFS
Cf. A110236, bisection of A202411.
Sequence in context: A304937 A152090 A190528 * A176604 A014140 A271788
KEYWORD
nonn
AUTHOR
Peter Luschny, Jan 14 2012
STATUS
approved