%I #5 Mar 31 2012 12:36:52
%S 1,35,2310,150590,7083180,220242352,4694959782,73210175188,
%T 884548287930,8662839281016,71184672828044,504049844964381,
%U 3140436383106363,17505068527561817,88480896162347475,410071668606434129
%N Number of nX5 nonnegative integer arrays with each row and column increasing from zero by 0, 1, 2 or 3
%C Column 5 of A202924
%H R. H. Hardin, <a href="/A202921/b202921.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = (195835447/921016874347885620264960000000)*n^30 + (32302997371/1105220249217462744317952000000)*n^29 + (4523355401/2345294958551645080780800000)*n^28 + (886560002233/10888869450418352160768000000)*n^27 + (29742201718891/12098743833798169067520000000)*n^26 + (193663430593/3446935565184663552000000)*n^25 + (4025054908697/4009051211199393300480000)*n^24 + (5584672736712721/390882493091940846796800000)*n^23 + (1461079570073647/8944679475788120064000000)*n^22 + (331602111318253/220712870181784780800000)*n^21 + (3577787629764307/323712209599951011840000)*n^20 + (5769729191311489/89920058222208614400000)*n^19 + (15333220482708071/53169105251598336000000)*n^18 + (11584014200071524817/11628083318524556083200000)*n^17 + (61540411255831537/21046304648913223680000)*n^16 + (147326045540429051/13959283695707750400000)*n^15 + (286004475612124337941/5537182532630740992000000)*n^14 + (613101058463664853/2839580785964482560000)*n^13 + (75907603950090998909/130729930799980216320000)*n^12 + (1099678549299612391801/1158742568454370099200000)*n^11 + (349516945249559551546937/159327103162475888640000000)*n^10 + (23761002644907160364419/2276101473749655552000000)*n^9 + (4960732719960363806899/193890125541637324800000)*n^8 + (2947726341115377922003/484725313854093312000000)*n^7 - (182131190227562680110623/6126389383433679360000000)*n^6 + (68677260920117177555993/306319469171683968000000)*n^5 + (611218665561444167/1033466495181120000)*n^4 - (164000846576478403/1823330173640976000)*n^3 - (304980687788080027/279770238283536000)*n^2 + (3139722718837/2329089562800)*n
%e Some solutions for n=3
%e ..0..0..0..0..0....0..0..0..0..0....0..0..0..0..0....0..0..0..0..0
%e ..0..1..2..2..3....0..2..2..2..2....0..2..2..3..3....0..0..1..2..3
%e ..0..1..2..2..5....0..2..2..5..5....0..2..2..3..6....0..2..2..4..6
%K nonn
%O 1,2
%A _R. H. Hardin_ Dec 26 2011