OFFSET
1,2
COMMENTS
Column 6 of A202756.
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..210
Robert Israel, Maple-assisted proof of empirical formula
FORMULA
Empirical: a(n) = (1/4572288000)*n^15 + (1/76204800)*n^14 + (41/130636800)*n^13 + (1/272160)*n^12 + (12631/653184000)*n^11 + (113/5443200)*n^10 + (2941/914457600)*n^9 + (661/381024)*n^8 + (1820467/326592000)*n^7 - (38281/10886400)*n^6 + (995867/16329600)*n^5 + (4181/68040)*n^4 - (253877/2646000)*n^3 + (233011/529200)*n^2 + (667/1260)*n.
Empirical formula verified (see link). - Robert Israel, Jun 02 2019
EXAMPLE
Some solutions for n=5:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1
0 0 1 1 2 2 0 0 0 1 2 2 0 0 0 0 1 1 0 0 0 1 1 2
0 0 1 1 2 2 0 0 0 1 2 3 0 0 1 1 1 2 0 0 1 2 2 3
0 1 2 2 2 2 0 0 1 2 3 3 0 1 2 2 2 3 0 1 2 3 3 4
MAPLE
seq((1/4572288000)*n^15 + (1/76204800)*n^14 + (41/130636800)*n^13 + (1/272160)*n^12 + (12631/653184000)*n^11 + (113/5443200)*n^10 + (2941/914457600)*n^9 + (661/381024)*n^8 + (1820467/326592000)*n^7 - (38281/10886400)*n^6 + (995867/16329600)*n^5 + (4181/68040)*n^4 - (253877/2646000)*n^3 + (233011/529200)*n^2 + (667/1260)*n, n=1..30); # Robert Israel, Jun 02 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 23 2011
STATUS
approved