This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A202184 Triangle T(n,m) = coefficient of x^n in expansion of x^m*(x+1)^(m*x^2) = sum(n>=m, T(n,m) x^n*m!/n!). 0
 1, 0, 1, 0, 0, 1, 24, 0, 0, 1, -60, 120, 0, 0, 1, 240, -360, 360, 0, 0, 1, 1260, 1680, -1260, 840, 0, 0, 1, -12096, 30240, 6720, -3360, 1680, 0, 0, 1, 105840, -290304, 226800, 20160, -7560, 3024, 0, 0, 1, -388800, 2721600, -2358720, 1058400, 50400, -15120 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,7 COMMENTS 1 LINKS FORMULA T(n,m):=n!/m!*sum(k=0..(n-m)/2, (m^k*stirling1(n-m-2*k,k))/(n-m-2*k)!). EXAMPLE 1, 0, 1, 0, 0, 1, 24, 0, 0, 1, -60, 120, 0, 0, 1, 240, -360, 360, 0, 0, 1, 1260, 1680, -1260, 840, 0, 0, 1 PROG (Maxima) T(n, m):=n!/m!*sum((m^k*stirling1(n-m-2*k, k))/(n-m-2*k)!, k, 0, (n-m)/2); CROSSREFS Sequence in context: A053558 A140793 A023923 * A075406 A075404 A194894 Adjacent sequences:  A202181 A202182 A202183 * A202185 A202186 A202187 KEYWORD sign,tabl AUTHOR Vladimir Kruchinin, Dec 13 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .