login
A202177
Number of partitions p of n such that each part of p is prime and each part of the conjugate partition of p is also prime.
0
0, 0, 0, 1, 0, 2, 0, 1, 1, 2, 0, 2, 2, 2, 2, 3, 3, 0, 4, 2, 5, 2, 4, 3, 8, 2, 6, 4, 11, 0, 10, 4, 14, 2, 14, 4, 21, 2, 20, 5, 25, 0, 28, 6, 30, 2, 38, 5, 46, 0, 44, 4, 54, 0, 56, 6, 67, 2, 72, 4, 93, 2, 74, 7, 113, 0, 100, 8, 131, 0, 128
OFFSET
1,6
LINKS
Eric Weisstein's World of Mathematics, Prime Partition.
EXAMPLE
For n=17, there are three valid partitions: (7,7,3), its conjugate partition (3,3,3,2,2,2,2), and the self-conjugate partition (5,5,3,2,2).
Thus a(17)=3.
MATHEMATICA
ConjugatePartition[l_List] :=
Module[{i, r = Reverse[l], n = Length[l]},
Table[n + 1 - Position[r, _?(# >= i &), Infinity, 1][[1, 1]], {i,
l[[1]]}]]; f[n_] := Select[Select[IntegerPartitions[n], And @@ (PrimeQ[#]) &],
And @@ (PrimeQ[ConjugatePartition[#]]) &]; a[n_] := Length[f[n]]; Table[a[n], {n, 1, 40}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ben Branman, Jan 09 2013
STATUS
approved