login
Triangular array read by rows. T(n,k) is the number of connected endofunctions on {1,2,...,n} that have exactly k nodes in the unique cycle of its digraph representation.
3

%I #34 Sep 08 2022 08:46:01

%S 1,2,1,9,6,2,64,48,24,6,625,500,300,120,24,7776,6480,4320,2160,720,

%T 120,117649,100842,72030,41160,17640,5040,720,2097152,1835008,1376256,

%U 860160,430080,161280,40320,5040,43046721,38263752,29760696,19840464,11022480,4898880,1632960,362880,40320

%N Triangular array read by rows. T(n,k) is the number of connected endofunctions on {1,2,...,n} that have exactly k nodes in the unique cycle of its digraph representation.

%C Column k=1: A000169,

%C Column k=2: A053506,

%C Column k=3: A065513.

%C Row sums: A001865.

%C T(n,n) = (n-1)!, T(n,n-1) = n!.

%C Sum_{k=1..n} T(n,k)*k = n^n. - _Geoffrey Critzer_, May 13 2013

%C From the asymptotic given by N-E. Fahssi in A001865, we see the expected size of the cycle grows as (2*n/Pi)^(1/2). - _Geoffrey Critzer_, May 13 2013

%C Central terms: A277168. - _Paul D. Hanna_, Oct 01 2016

%H Alois P. Heinz, <a href="/A201685/b201685.txt">Rows n = 1..141, flattened</a>

%F E.g.f.: log(1/(1-y*A(x))) where A(x) is the e.g.f. for A000169.

%F T(n,k) = binomial(n-1,k-1)*n^(n-k)*(k-1)!. - _Geoffrey Critzer_, May 13 2013

%e Triangle begins as:

%e 1;

%e 2, 1;

%e 9, 6, 2;

%e 64, 48, 24, 6;

%e 625, 500, 300, 120, 24;

%e 7776, 6480, 4320, 2160, 720, 120;

%p T:= (n, k)-> binomial(n-1, k-1)*n^(n-k)*(k-1)!:

%p seq(seq(T(n, k), k=1..n), n=1..12); # _Alois P. Heinz_, Aug 14 2013

%t f[list_] := Select[list, # > 0 &]; t = Sum[n^(n - 1) x^n/n!, {n, 1, 20}]; Map[f, Drop[Range[0, 10]! CoefficientList[Series[Log[1/(1 - y t)], {x, 0, 10}], {x, y}], 1]] // Grid

%o (PARI) T(n,k) = binomial(n-1,k-1)*n^(n-k)*(k-1)!; \\ _G. C. Greubel_, Jan 08 2020

%o (Magma) [Binomial(n-1,k-1)*n^(n-k)*Factorial(k-1): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Jan 08 2020

%o (Sage) [[binomial(n-1,k-1)*n^(n-k)*factorial(k-1) for k in (1..n)] for n in (1..12)] # _G. C. Greubel_, Jan 08 2020

%o (GAP) Flat(List([1..12], n-> List([1..n], k-> Binomial(n-1,k-1)*n^(n-k)*Factorial(k-1) ))); # _G. C. Greubel_, Jan 08 2020

%Y Cf. A000169, A001865, A053506, A065513, A277168.

%K nonn,tabl

%O 1,2

%A _Geoffrey Critzer_, Dec 03 2011