Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Mar 28 2023 12:50:13
%S 1,3,6,13,30,70,167,405,992,2450,6090,15214,38165,96069,242530,613811,
%T 1556856,3956316,10070871,25674210,65541142,167517654,428635032,
%U 1097874434,2814611701,7221917871,18544968768,47655572191,122544150258,315313433594,811792614547
%N a(n) is the number of Fibonacci meanders of length m*n and central angle 360/m degrees where m = 2.
%C Empirically the partial sums of A051291. - _Sean A. Irvine_, Jul 13 2022
%C The above conjecture was proved by Baril et al., which also give a formal definition of the Fibonacci meanders and describe a bijection with a certain class of peakless grand Motzkin paths of length n. - _Peter Luschny_, Mar 16 2023
%H Jean-Luc Baril, Sergey Kirgizov, Rémi Maréchal, and Vincent Vajnovszki, <a href="https://arxiv.org/abs/2202.06893">Enumeration of Dyck paths with air pockets</a>, arXiv:2202.06893 [cs.DM], 2022-2023.
%H Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/FibonacciMeanders">Fibonacci meanders</a>.
%F a(n) = Sum_{k=0..2n-1} A202411(k).
%F a(n) = [x^n] (x^2 - x + 1 - R)/((x - 1)*(x^2 - x - 1 + R) * R), where R = (((x - 3)*x + 1)*(x^2 + x + 1))^(1/2). (This is Theorem 21 in Baril et al.) - _Peter Luschny_, Mar 16 2023
%e a(3) = 6 = card({100001, 100100, 110000, 111001, 111100, 111111}).
%p A201631 := n -> add(A202411(k),k=0..2*n-1): seq(A201631(i),i=1..9);
%p # Alternative, using the g.f. of Baril et al.:
%p S := (x^2 - x + 1 - R)/((x - 1)*(x^2 - x - 1 + R)*R):
%p R := (((x - 3)*x + 1)*(x^2 + x + 1))^(1/2): ser := series(S, x, 33):
%p seq(coeff(ser, x, n), n = 1..31); # _Peter Luschny_, Mar 16 2023
%p # Using a recurrence:
%p a := proc(n) option remember; if n < 5 then return [0, 1, 3, 6, 13][n + 1] fi;
%p (n*(2*n - 1)*(2*n - 3)*(n - 5)*a(n - 5) - (n - 4)*(2*n - 1)^2*(3*n - 5)*a(n - 4) + (2*n - 5)*(n - 3)*(2*n^2 - 3*n + 2)*a(n - 3) - (2*n - 3)*(n - 2)*(2*n^2 - 3*n + 5)*a(n - 2) + (3*n - 4)*(2*n - 1)*(2*n - 5)*(n - 1)*a(n - 1))/(n*(2*n - 3)*(2*n - 5)*(n - 1)) end: seq(a(n), n = 1..31); # _Peter Luschny_, Mar 16 2023
%t a[n_] := Sum[A202411[k], {k, 0, 2 n - 1}];
%t Array[a, 31] (* _Jean-François Alcover_, Jun 29 2019 *)
%Y Cf. A110236, A110198, A202411, A203611, A051291, A358734.
%Y Cf. A361574 (case m=3).
%K nonn
%O 1,2
%A _Peter Luschny_, Jan 15 2012