%I #17 Mar 18 2020 14:51:40
%S 1,-1,1,0,-2,1,2,1,-3,1,-1,2,3,-4,1,0,-3,1,6,-5,1,0,1,-5,-2,10,-6,1,0,
%T 0,4,-6,-8,15,-7,1,0,0,-1,9,-4,-18,21,-8,1,0,0,0,-5,15,4,-33,28,-9,1,
%U 0,0,0,1,-14,19,22,-54,36,-10,1,0,0,0,0,6,-29,15,55,-82,45,-11,1,0,0,0,0,-1,20,-48,-7,109,-118,55,-12,1,0,0,0,0,0,-7,49,-63,-62,191,-163,66,-13,1
%N Triangle read by rows: lower triangular matrix which is inverse to the Fibonacci triangle (A139375) regarded as a lower triangular matrix.
%H Tian-Xiao He and Renzo Sprugnoli, <a href="https://doi.org/10.1016/j.disc.2008.11.021">Sequence characterization of Riordan arrays</a>, Discrete Math. 309 (2009), no. 12, 3962-3974.
%e Triangle begins
%e 1
%e -1 1
%e 0 -2 1
%e 2 1 -3 1
%e -1 2 3 -4 1
%e 0 -3 1 6 -5 1
%e 0 1 -5 -2 10 -6
%e ...
%p read("transforms3") ;
%p g := 1-x+2*x^3-x^4 ;
%p h := x*(1-x) ;
%p for n from 0 to 10 do
%p for k from 0 to n do
%p RIORDAN(g,h,n,k) ;
%p printf("%d,",%) ;
%p end do:
%p printf("\n") ;
%p end do: # _R. J. Mathar_, Dec 13 2011
%Y Cf. A139375.
%K sign,tabl
%O 0,5
%A _N. J. A. Sloane_, Nov 27 2011