OFFSET
1,1
COMMENTS
Column 2 of A201142.
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..183
FORMULA
Empirical: a(n) = a(n-3) +5*a(n-6) -5*a(n-9) -10*a(n-12) +10*a(n-15) +10*a(n-18) -10*a(n-21) -5*a(n-24) +5*a(n-27) +a(n-30) -a(n-33)
Subsequences for n modulo 6 = 1,2,3,4,5,0
p=(n+5)/6: a(n) = 44*p^5 - (251/6)*p^4 + (29/2)*p^3 - (5/3)*p^2
q=(n+4)/6: a(n) = 44*q^5 - (53/4)*q^4 - 1*q^3 + (1/4)*q^2
r=(n+3)/6: a(n) = (44/15)*r^5 + (4/3)*r^4 + (1/2)*r^3 + (1/6)*r^2 + (1/15)*r
s=(n+2)/6: a(n) = 44*s^5 + (721/12)*s^4 + 26*s^3 + (53/12)*s^2 + (1/2)*s
t=(n+1)/6: a(n) = 44*t^5 + (629/6)*t^4 + (185/2)*t^3 + (107/3)*t^2 + 5*t
u=(n+0)/6: a(n) = (44/15)*u^5 + (133/12)*u^4 + 17*u^3 + (161/12)*u^2 + (167/30)*u + 1.
EXAMPLE
Some solutions for n=10:
..0..3....0..0....0..0....0..2....0..0....0..1....0..1....0..0....0..1....0..1
..0..3....0..2....0..1....0..3....0..1....0..2....0..2....0..2....0..2....0..1
..0..3....1..2....0..2....0..3....1..1....0..2....0..2....1..2....0..3....0..3
..1..4....1..3....1..3....0..3....1..3....0..2....1..2....1..3....0..3....1..3
..1..4....1..3....1..3....1..4....2..3....1..2....1..3....1..3....1..3....1..3
..1..4....2..4....2..3....1..4....2..3....1..3....3..3....1..3....1..4....2..4
..2..5....2..4....2..4....1..5....2..4....3..4....4..5....2..4....1..4....2..4
..2..5....3..5....3..4....2..5....3..4....3..5....4..5....3..4....2..5....2..4
..2..5....4..5....4..5....2..5....4..5....4..5....4..5....4..5....2..5....2..5
..2..5....4..5....5..5....4..5....5..5....4..5....4..5....5..5....4..5....5..5
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 27 2011
STATUS
approved